A073424 Triangle read by rows: T(m,n) = parity of 0^n + 0^m, n = 0,1,2,3 ..., m = 0,1,2,3, ... n.
0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 0
Examples
a(3) = 1 because (2k)^2 + (2k)^0 = 4k^2 + 1 is odd. Triangle begins : 0 1, 0 1, 0, 0 1, 0, 0, 0 1, 0, 0, 0, 0 1, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0, 0 1, 0, 0, 0, 0, 0, 0, 0, 0, 0 - _Philippe Deléham_, Feb 11 2012
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150).
- Franck Ramaharo, A generating polynomial for the pretzel knot, arXiv:1805.10680 [math.CO], 2018.
Programs
-
Maple
0, seq(op([1,0$n]), n=1..20); # Robert Israel, Mar 01 2016
-
Mathematica
Array[If[# == 1, {0}, PadRight[{1}, #]] &, 14] // Flatten (* or *) Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; Table[0^m + 0^n - 2 Boole[m == n == 0], {n, 0, 14}, {m, 0, n}] // Flatten (* Michael De Vlieger, Aug 22 2018 *)
-
Python
from math import isqrt def A073424(n): return int((k:=n<<1)==(m:=isqrt(k))*(m+1)) if n else 0 # Chai Wah Wu, Nov 09 2024
Formula
a(n) = parity [ (2k)^n + (2k)^m, n = 0, 1, 2, 3 ..., m = 0, 1, 2, 3, ... n ]
T(n,0) = 1- 0^n, T(n,k) = 0 for k>0. - Philippe Deléham, Feb 11 2012
G.f.: Theta_2(0,sqrt(x))/(2*x^(1/8))-1, where Theta_2 is a Jacobi theta function. - Robert Israel, Mar 01 2016
For n>0, a(n) = 1 if and only if n is in A000217. - Chai Wah Wu, Nov 09 2024
Comments