This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073445 #33 Jun 03 2025 02:27:21 %S A073445 0,-1,0,1,0,-1,0,1,0,-1,0,1,-1,0,0,0,1,0,-1,0,0,0,1,-1,0,1,0,-1,0,1, %T A073445 -1,0,0,0,1,-1,0,0,0,1,0,-1,0,0,0,1,-1,0,1,0,-1,0,0,0,1,-1,0,1,-1,0,0, %U A073445 0,1,-1,0,0,0,0,0,1,-1,0,1,0,-1,0,1,0,-1,0,1,-1,0,0,0,0,0,0,0,0,0,0,0,1,-1,0,1,-1,0,0,0,1,0,-1,0,0,0,0,0,0,0,1,0,-1,0 %N A073445 Second differences of A002808, the sequence of composites. %H A073445 Reinhard Zumkeller, <a href="/A073445/b073445.txt">Table of n, a(n) for n = 1..10000</a> %F A073445 a(n) = c(n+2)-2*c(n+1)+c(n), where c(n) = A002808(n). %F A073445 a(n) = A073783(n+1) - A073783(n). - _Reinhard Zumkeller_, Jan 10 2013 %e A073445 From _Gus Wiseman_, Oct 10 2024: (Start) %e A073445 The composite numbers (A002808) are: %e A073445 4, 6, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 26, 27, 28, 30, 32, 33, ... %e A073445 with first differences (A073783): %e A073445 2, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 1, 1, ... %e A073445 with first differences (A073445): %e A073445 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, 1, -1, ... %e A073445 (End) %t A073445 c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; Table[c[w+2]-2*c[w+1]+c[w], {w, 200}] %t A073445 (* second program *) %t A073445 Differences[Select[Range[100],CompositeQ],2] (* _Gus Wiseman_, Oct 08 2024 *) %o A073445 (Haskell) %o A073445 a073445 n = a073445_list !! (n-1) %o A073445 a073445_list = zipWith (-) (tail a073783_list) a073783_list %o A073445 -- _Reinhard Zumkeller_, Jan 10 2013 %o A073445 (Python) %o A073445 from sympy import primepi %o A073445 def A073445(n): %o A073445 def iterfun(f,n=0): %o A073445 m, k = n, f(n) %o A073445 while m != k: m, k = k, f(k) %o A073445 return m %o A073445 return (a:=iterfun(f:=lambda x:n+primepi(x)+1,n))-((b:=iterfun(lambda x:f(x)+1,a))<<1)+iterfun(lambda x:f(x)+2,b) # _Chai Wah Wu_, Oct 03 2024 %Y A073445 Also first differences of A054546. %Y A073445 For first differences we had A073783 (ones A375929), run-lengths A376680. %Y A073445 Positions of zeros are A376602. %Y A073445 Positions of nonzeros are A376603. %Y A073445 Positions of ones are A376651, negative-ones A376652. %Y A073445 A002808 lists the composite numbers. %Y A073445 A064113 lists positions of adjacent equal prime gaps. %Y A073445 A333254 gives run-lengths of differences between consecutive primes. %Y A073445 Other second differences: A036263 (prime), A376590 (squarefree), A376596 (prime-power), A376604 (Kolakoski). %Y A073445 Cf. A076259, A174965, A251092, A376562, A376593, A376599. %K A073445 sign,easy %O A073445 1,1 %A A073445 _Labos Elemer_, Aug 01 2002