cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073447 Decimal expansion of csc(1).

Original entry on oeis.org

1, 1, 8, 8, 3, 9, 5, 1, 0, 5, 7, 7, 8, 1, 2, 1, 2, 1, 6, 2, 6, 1, 5, 9, 9, 4, 5, 2, 3, 7, 4, 5, 5, 1, 0, 0, 3, 5, 2, 7, 8, 2, 9, 8, 3, 4, 0, 9, 7, 9, 6, 2, 6, 2, 5, 2, 6, 5, 2, 5, 3, 6, 6, 6, 3, 5, 9, 1, 8, 4, 3, 6, 7, 3, 5, 7, 1, 9, 0, 4, 8, 7, 9, 1, 3, 6, 6, 3, 5, 6, 8, 0, 3, 0, 8, 5, 3, 0, 2, 3, 2, 4, 7, 2, 4
Offset: 1

Views

Author

Rick L. Shepherd, Aug 01 2002

Keywords

Comments

By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 13 2019

Examples

			1.18839510577812121626159945237...
		

Crossrefs

Cf. A049469 (sin(1)=1/A073447), A049470 (cos(1)), A049471 (tan(1)), A073448 (sec(1)), A073449 (cot(1)).

Programs

  • Mathematica
    RealDigits[Csc[1], 10, 120][[1]] (* Amiram Eldar, May 29 2023 *)
  • PARI
    1/sin(1)

Formula

Equals Sum_{n=-oo..oo} ((-1)^n/(1 + n*Pi)). - Jean-François Alcover, Mar 21 2013.
Equals Sum_{k>=0} (-1)^k * (2 - 4^k) * bernoulli(2*k)/(2*k)! = Sum_{k>=0} (-1)^k * (2 - 4^k) * A027641(2*k)/(A027642(2*k)*(2*k)!). - Amiram Eldar, Aug 03 2020