A073476 Numbers k such that k^4 + 1, (k+2)^4 + 1 and (k+4)^4 + 1 are all primes.
2, 2222, 2732, 3998, 5356, 5358, 5626, 8034, 9402, 9972, 10006, 10930, 12188, 12322, 12702, 13372, 14536, 15038, 15962, 21396, 24704, 25446, 27118, 29566, 36126, 36604, 36732, 36734, 37550, 37552, 37554, 44176, 44218, 48164, 48978
Offset: 1
Keywords
Examples
2222^4+1, 2224^4+1 and 2226^4+1 are prime
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A000068, n such that n^4+1 is prime.
Programs
-
Maple
N:= 10^5: # to get all terms <= N R:= select(t -> isprime(t^4+1), [seq(i,i=2..N,2)]): V:= select(i -> R[i+2]=R[i]+4, [$1..nops(R)-2]): R[V]; # Robert Israel, Apr 20 2017
-
Mathematica
Select[Range[5000], PrimeQ[ #^4 + 1] && PrimeQ[(# + 2)^4 + 1] && PrimeQ[(# + 4)^4 + 1] & ]
Extensions
More terms from Robert G. Wilson v, Aug 28 2002