This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073504 #38 May 09 2025 01:00:32 %S A073504 0,0,0,2,2,2,2,4,4,4,4,6,6,8,8,10,10,10,10,12,12,12,12,14,14,14,14,16, %T A073504 16,18,18,20,20,20,20,22,22,22,22,24,24,24,24,26,26,28,28,30,30,30,30, %U A073504 32,32,34,34,36,36,36,36,38,38,40,40,42,42,42,42,44,44,44,44,46,46,46 %N A073504 A possible basis for finite fractal sequences: let u(1) = 1, u(2) = n, u(k) = floor(u(k-1)/2) + floor(u(k-2)/2); then a(n) = lim_{k->infinity} u(k). %C A073504 The minimum number k(n) of iterations in order to have u(k(n)) = a(n) is asymptotic to log(n)/2. Let m be any fixed positive integer and let Fr(m,n) = 3*Sum_{k = 1..n} a(k) - n^2 + m*n; then Fr(m,n) is a fractal generator function, i.e., there is an integer B(m) such that the graph for Fr(n,m) presents same fractal aspects for 1 <= n <= B(m). B(m) depends on the parity of m. B(2*p+1) = (5/3)*(4^p-1); B(2*p) = (2/3)*(4^p-1). [Formula for Fr(m,n) corrected by _Petros Hadjicostas_, Oct 21 2019 using the PARI program below.] %H A073504 Benoit Cloitre, <a href="/A073059/a073059_4.jpg">Graph of Fr(n,4) for 1 <= n <= B(4)</a>. %H A073504 Benoit Cloitre, <a href="/A073059/a073059_6.jpg">Graph of Fr(n,6) for 1 <= n <= B(6)</a>. %H A073504 Benoit Cloitre, <a href="/A073059/a073059_8.jpg">Graph of Fr(n,8) for 1 <= n <= B(8)</a>. %H A073504 Benoit Cloitre, <a href="/A073059/a073059_5.jpg">Graph of Fr(n,5) for 1 <= n <= B(5)</a>. %H A073504 Benoit Cloitre, <a href="/A073059/a073059_7.jpg">Graph of Fr(n,7) for 1 <= n <= B(7)</a>. %H A073504 Benoit Cloitre, <a href="/A073059/a073059_9.jpg">Graph of Fr(n,9) for 1 <= n <= B(9)</a>. %F A073504 a(n) is asymptotic to 2*n/3. %o A073504 (PARI) for(n=1, taille, u1=1; u2=n; while((u2!=u1)||((u2%2) == 1), u3=u2; u2=floor(u2/2)+floor(u1/2); u1=u3; ); b[n]=u2; ) fr(m, k)=(3*sum(i=1, k, b[i]))-k^2+m*k; bound(m)=if((m%2) == 1, p=(m-1)/2; 5/3*(4^p-1), 2/3*(4^(m/2)-1)); m=5; fractal=vector(bound(m)); for(i=1, bound(m), fractal[i]=fr(m, i); ); Mm=vecmax(fractal) indices=vector(bound(m)); for(i=1, bound(m), indices[i]=i); myStr=plothrawexport("svg",indices,fractal,1);write("myPlot.svg",myStr); \\ To generate graphs %Y A073504 Cf. A073059 and A071992 (curiously A071992 presents the same fractal aspects as Fr(n, m)). %K A073504 nonn %O A073504 1,4 %A A073504 _Benoit Cloitre_ and Boris Gourevitch (boris(AT)pi314.net), Aug 16 2002