This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073505 #17 Feb 16 2025 08:32:46 %S A073505 0,5,40,306,2387,19617,166104,1440298,12711386,113761519,1029517130, %T A073505 9401960980,86516370000 %N A073505 Number of primes == 1 (mod 10) less than 10^n. %C A073505 Also Pi(n,5,1) %C A073505 This and the related sequences A073505-A073517 and A006880, A073548-A073565 are included because there is interest in the distribution of primes by their initial or final digits. %H A073505 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ModularPrimeCountingFunction.html">Modular Prime Counting Function</a> %F A073505 a(n) + A073506(n) + A073507(n) + A073508(n) + 2 = A006880(n). %e A073505 a(2) = 5 because there are 5 primes == 1 (mod 10) less than 10^2. They are 11, 31, 41, 61 and 71. %t A073505 c = 0; k = 1; Do[While[k < 10^n, If[PrimeQ[k], c++ ]; k += 10]; Print[c], {n, 1, 10}] %Y A073505 Cf. A006880, A087630, A073506, A073507, A073508, A073509, A073510, A073511, A073512, A073513, A073514, A073515, A073516, A073517. %K A073505 base,nonn,more %O A073505 1,2 %A A073505 _Shyam Sunder Gupta_, Aug 14 2002 %E A073505 Edited by _Robert G. Wilson v_, Oct 03 2002 %E A073505 a(10) from _Robert G. Wilson v_, Dec 22 2003 %E A073505 a(11)-a(13) from _Giovanni Resta_, Aug 07 2018