A073547 Numbers k such that antid(k) = antid(k+1), where antid(k) = A066272(k).
1, 3, 8, 10, 14, 19, 20, 22, 27, 29, 40, 42, 46, 49, 52, 58, 65, 70, 74, 75, 82, 87, 90, 91, 94, 102, 103, 112, 116, 118, 122, 124, 131, 135, 148, 149, 151, 154, 157, 159, 171, 180, 183, 187, 188, 198, 204, 205, 208, 212, 213, 214, 217, 220, 222, 227, 231, 232
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Crossrefs
Cf. A066272.
Programs
-
Maple
N:= 1000: # to get all terms <= N-1 V:= Vector(N): for k from 1 to floor(N/3) do R1:= [seq(i, i=3*k .. N, 2*k)]; V[R1]:= map(`+`,V[R1],1); R2:= [seq(i, i=3*k+1 .. N, 2*k+1)]; V[R2]:= map(`+`,V[R2],1); R3:= [seq(i,i=3*k+2 .. N, 2*k+1)]; V[R3]:= map(`+`,V[R3],1); od: select(t -> V[t]=V[t+1], [$1..N-1]); # Robert Israel, Sep 26 2016
-
Mathematica
at[n_] := Count[Flatten[Quotient[#, Rest[Select[Divisors[#], OddQ]]] & /@ (2 n + Range[-1, 1])], Except[1]]; Select[Range[232], at[#] == at[# + 1] &] (* Jayanta Basu, Jul 01 2013 *)