This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073576 #49 Aug 23 2024 10:03:12 %S A073576 1,1,2,3,4,6,9,12,16,21,28,36,47,60,76,96,120,150,185,228,280,342,416, %T A073576 504,608,731,877,1048,1249,1484,1759,2079,2452,2885,3387,3968,4640, %U A073576 5413,6304,7328,8504,9852,11395,13159,15172,17468,20082,23056,26434,30267 %N A073576 Number of partitions of n into squarefree parts. %C A073576 Euler transform of the absolute values of A008683. - _Tilman Neumann_, Dec 13 2008 %C A073576 Euler transform of A008966. - _Vaclav Kotesovec_, Mar 31 2018 %H A073576 Alois P. Heinz, <a href="/A073576/b073576.txt">Table of n, a(n) for n = 0..10000</a> %F A073576 G.f.: 1/Product_{k>0} (1-x^A005117(k)). %F A073576 a(n) = 1/n*Sum_{k=1..n} A048250(k)*a(n-k). %F A073576 a(n) = A000041(n) - A114374(n) - A117395(n), n>0. - _Reinhard Zumkeller_, Mar 11 2006 %F A073576 G.f.: 1 + Sum_{i>=1} mu(i)^2*x^i / Product_{j=1..i} (1 - mu(j)^2*x^j). - _Ilya Gutkovskiy_, Jun 05 2017 %F A073576 a(n) ~ exp(2*sqrt(n)) / (4*Pi^(3/2)*n^(1/4)). - _Vaclav Kotesovec_, Mar 24 2018 %p A073576 with(numtheory): %p A073576 a:= proc(n) option remember; `if`(n=0, 1, add(add(d* %p A073576 abs(mobius(d)), d=divisors(j)) *a(n-j), j=1..n)/n) %p A073576 end: %p A073576 seq(a(n), n=0..60); # _Alois P. Heinz_, Mar 05 2015 %t A073576 Table[Length[Select[Boole /@ Thread /@ SquareFreeQ /@ IntegerPartitions[n], FreeQ[#, 0] &]], {n, 48}] (* _Jayanta Basu_, Jul 02 2013 *) %t A073576 a[n_] := a[n] = If[n==0, 1, Sum[Sum[d*Abs[MoebiusMu[d]], {d, Divisors[j]}] * a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 60}] (* _Jean-François Alcover_, Oct 10 2015, after _Alois P. Heinz_ *) %t A073576 nmax = 60; CoefficientList[Series[Exp[Sum[Sum[Abs[MoebiusMu[k]] * x^(j*k) / j, {k, 1, Floor[nmax/j] + 1}], {j, 1, nmax}]], {x, 0, nmax}], x] (* _Vaclav Kotesovec_, Mar 31 2018 *) %o A073576 (Haskell) %o A073576 a073576 = p a005117_list where %o A073576 p _ 0 = 1 %o A073576 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m %o A073576 -- _Reinhard Zumkeller_, Jun 01 2015 %o A073576 (Python) %o A073576 from functools import lru_cache %o A073576 from sympy import mobius, divisors %o A073576 @lru_cache(maxsize=None) %o A073576 def A073576(n): return sum(sum(d*abs(mobius(d)) for d in divisors(i, generator=True))*A073576(n-i) for i in range(1,n+1))//n if n else 1 # _Chai Wah Wu_, Aug 23 2024 %Y A073576 Cf. A058647. %Y A073576 Cf. A087188. %Y A073576 Cf. A225244. %Y A073576 Cf. A114374. %K A073576 nonn %O A073576 0,3 %A A073576 _Vladeta Jovovic_, Aug 27 2002