cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073582 Numbers k such that S(k) = k/2, where S(k) is the Kempner function A002034.

This page as a plain text file.
%I A073582 #28 Apr 13 2024 14:56:26
%S A073582 6,8,10,14,22,26,34,38,46,58,62,74,82,86,94,106,118,122,134,142,146,
%T A073582 158,166,178,194,202,206,214,218,226,254,262,274,278,298,302,314,326,
%U A073582 334,346,358,362,382,386,394,398,422,446,454,458,466,478,482,502,514
%N A073582 Numbers k such that S(k) = k/2, where S(k) is the Kempner function A002034.
%C A073582 Unique sequence such that A033677(a(m))-A033676(a(m)) approaches a(m)/2. - Joseph Biberstine, Dec 25 2004
%C A073582 Numbers k such that A000203(k) = 3 + k/2 + k. - _Melvin Peralta_, Aug 15 2016
%C A073582 Is this sequence "Twice the odd primes and 8"? - _Joerg Arndt_, Sep 13 2016
%H A073582 Michel Marcus, <a href="/A073582/b073582.txt">Table of n, a(n) for n = 1..669</a>
%H A073582 Wikipedia, <a href="https://en.wikipedia.org/wiki/Kempner_function">Kempner function</a>
%t A073582 Select[Range@ 514, Function[n, m = 1; While[! Divisible[m!, n], m++]; m == n/2]] (* or *)
%t A073582 Select[Range@ 514, DivisorSigma[1, #] == 3 + #/2 + # &] (* _Michael De Vlieger_, Aug 15 2016 *)
%Y A073582 Cf. A033676, A033677, A000203.
%K A073582 easy,nonn
%O A073582 1,1
%A A073582 _Jason Earls_, Aug 28 2002