This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073590 #17 Feb 20 2022 06:42:01 %S A073590 1,3,11,44,229,1339,9603,75200,690009,6779803,75792507,896040188, %T A073590 11811267389,163229695459,2478388484947,39203092296480, %U A073590 673698509829233,12002969025435603,230288108992819819,4563243145806294636 %N A073590 Expansion of e.g.f. exp(x) * log(1+x)/(1-x). %C A073590 Row sums of A073480. %H A073590 Seiichi Manyama, <a href="/A073590/b073590.txt">Table of n, a(n) for n = 1..449</a> %F A073590 a(n) ~ n! * exp(1) * log(2). - _Vaclav Kotesovec_, Jul 02 2015 %F A073590 a(n) = Sum_{k=1..n} k! * binomial(n,k) * Sum_{j=1..k} (-1)^(j+1)/j. - _Seiichi Manyama_, Feb 20 2022 %t A073590 Rest[CoefficientList[Series[E^x*Log[1+x]/(1-x), {x, 0, 20}], x] * Range[0, 20]!] (* _Vaclav Kotesovec_, Jul 02 2015 *) %o A073590 (PARI) my(N=40, x='x+O('x^N)); Vec(serlaplace(exp(x)*log(1+x)/(1-x))) \\ _Seiichi Manyama_, Feb 20 2022 %o A073590 (PARI) a(n) = sum(k=1, n, k!*binomial(n, k)*sum(j=1, k, (-1)^(j+1)/j)); \\ _Seiichi Manyama_, Feb 20 2022 %Y A073590 Cf. A024167, A073480. %K A073590 nonn %O A073590 1,2 %A A073590 _Vladeta Jovovic_, Aug 28 2002