This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073591 #31 Dec 24 2023 10:08:24 %S A073591 2,3,6,17,66,327,1958,13701,109602,986411,9864102,108505113, %T A073591 1302061346,16926797487,236975164806,3554627472077,56874039553218, %U A073591 966858672404691,17403456103284422,330665665962404001,6613313319248080002 %N A073591 a(n) = A000522(n) + 1. %C A073591 a(n) is an upper bound on the Ramsey numbers in A003323. - D. G. Rogers, Aug 27 2006 %C A073591 There is a nice derivation of the recurrence relation given in the Walker reference. %H A073591 Alois P. Heinz, <a href="/A073591/b073591.txt">Table of n, a(n) for n = 0..200</a> (28 terms from Vincenzo Librandi) %H A073591 R. C. Walker, <a href="http://www.jstor.org/stable/3615645">A graph coloring theorem</a>, Math. Gaz., 60 (1976), 54-57. %F A073591 Conjecture: a(n) +(-n-2)*a(n-1) +(2*n-1)*a(n-2) +(-n+2)*a(n-3)=0. - _R. J. Mathar_, Feb 16 2014 %F A073591 a(n) = n*(a(n-1) - 1) + 2. - _Georg Fischer_, Dec 24 2023 [from the Walker reference, p. 55] %p A073591 a:= proc(n) a(n):= `if`(n=0, 2, n*a(n-1)-n+2) end: %p A073591 seq(a(n), n=0..30); # _Alois P. Heinz_, Feb 17 2014 %t A073591 f[n_] := n*(f[n - 1] - 1) + 2;f[0]=2; ff[n_]:=(1/(1+n))(1+E*Gamma[1+n, 1]-E*(n^2)*Gamma[1+n, 1]+E*n*Gamma[2+n, 1]) (Spindler) %t A073591 Table[FunctionExpand[Gamma[n, 1] E] + 1, {n, 2, 29}] (* _Vincenzo Librandi_, Feb 17 2014 *) %Y A073591 Cf. A000522, A001339, A003323, A007526. %K A073591 nonn %O A073591 0,1 %A A073591 _Vladeta Jovovic_, Aug 28 2002