A073605 Smallest number m such that m + k == 0 mod k-th prime for all k from 1 to n.
1, 1, 7, 157, 787, 787, 210997, 5316097, 34415167, 703693777, 194794490677, 5208806743927, 138782093170507, 5006786309605867, 253579251611336437, 12551374903381164637, 142908008812141343557, 77053322014980646906357
Offset: 1
Keywords
Examples
a(5) = 787 as 788, 789, 790, 791 and 792 are divisible by 2, 3, 5,7 and 11 respectively.
Programs
-
Mathematica
Needs["NumberTheory`NumberTheoryFunctions`"]; Table[ ChineseRemainder[ Table[i, {i, 0, -n + 1, -1}], Table[ Prime[i], {i, 1, n}]] - 1, {n, 2, 18} ]
Extensions
Edited, corrected and extended by Robert G. Wilson v, Aug 05 2002