cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073612 Group the positive integers as (1, 2), (3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15, 16, 17), ... the n-th group containing prime(n) elements. Except the first, all groups contain an odd number of elements and hence have a middle term. Sequence gives the middle terms starting from group 2.

This page as a plain text file.
%I A073612 #26 May 26 2021 03:07:04
%S A073612 4,8,14,23,35,50,68,89,115,145,179,218,260,305,355,411,471,535,604,
%T A073612 676,752,833,919,1012,1111,1213,1318,1426,1537,1657,1786,1920,2058,
%U A073612 2202,2352,2506,2666,2831,3001,3177,3357,3543,3735,3930,4128,4333,4550,4775
%N A073612 Group the positive integers as (1, 2), (3, 4, 5), (6, 7, 8, 9, 10), (11, 12, 13, 14, 15, 16, 17), ... the n-th group containing prime(n) elements. Except the first, all groups contain an odd number of elements and hence have a middle term. Sequence gives the middle terms starting from group 2.
%H A073612 Christian Krause, <a href="https://github.com/ckrause/loda/blob/master/programs/oeis/073/A073612.asm">LODA program</a>
%F A073612 Difference of the triangular numbers corresponding to the sum of first (n+1) primes and that of first n primes/prime(n) for n > 1.
%F A073612 a(n) = (A061802(n-1) + 1)/2. - _Hugo Pfoertner_, Apr 30 2021
%F A073612 a(n) = A007504(n) - (prime(n)-1)/2. - _Andrew Howroyd_, Apr 30 2021
%F A073612 a(n) = (Sum_{i=2..n-1} A001043(i)) / 2 + 4. - _Christian Krause_, May 06 2021
%t A073612 Table[ Sum[ Prime[i], {i, 1, n}] - Floor[ Prime[n]/2], {n, 2, 50}]
%t A073612 For[lst={}; n1=3; n=2, n<=100, n++, n2=n1+Prime[n]; AppendTo[lst, (n2+n1-1)/2]; n1=n2]; lst
%t A073612 Module[{nn=50,no,pr},no=Total[Prime[Range[2,nn+1]]];pr=Prime[Range[2,nn]]; #[[ (Length[ #]+1)/2]]&/@TakeList[Range[3,no],pr]] (* Requires Mathematica version 11 or later *) (* _Harvey P. Dale_, Sep 20 2017 *)
%Y A073612 Cf. A007504, A034956, A061802.
%K A073612 nonn
%O A073612 2,1
%A A073612 _Amarnath Murthy_, Aug 05 2002
%E A073612 Edited by _Robert G. Wilson v_ and _T. D. Noe_, Aug 08 2002