This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073613 #26 Jun 28 2022 19:10:52 %S A073613 0,1,10,36,45,136,153,325,666,820,1225,1378,2080,2628,2701,3240,3321, %T A073613 4005,4753,5050,6786,7381,9316,10440,10585,11026,14365,16290,18721, %U A073613 19306,25425,27028,27261,29161,29890,32896,33930,41616,41905,42778 %N A073613 Triangular numbers which are the sum of two squares. %C A073613 The squares may be zero. %H A073613 Robert Israel, <a href="/A073613/b073613.txt">Table of n, a(n) for n = 1..10000</a> %F A073613 Intersection of A000217 and A001481. %e A073613 0 = A000217(0) = A001481(1) = 0^2 + 0^2 is listed here as a(1). %e A073613 1 = A000217(1) = A001481(2) = 1^2 + 0^2 is listed here as a(2). %e A073613 10 = A000217(4) = A001481(8) = 1^2 + 9^2 is listed here as a(3). %p A073613 filter:= proc(n) %p A073613 andmap(t -> (t[1] mod 4 <> 3 or t[2]::even), ifactors(n)[2]) %p A073613 end proc: %p A073613 select(filter, [seq(i*(i+1)/2, i=0..500)]); # _Robert Israel_, Nov 22 2017 %t A073613 t = Range[0, 250]^2; t1 = Flatten[Table[a + b, {a, t}, {b, t}]]; t2 = Accumulate[Range[300]]; Intersection[t1, t2] (* _Jayanta Basu_, Jul 03 2013 *) %t A073613 Select[Union[Total/@Tuples[Range[0,300]^2,2]],OddQ[Sqrt[8#+1]]&] (* _Harvey P. Dale_, Apr 22 2015 *) %o A073613 (PARI) is_A073613(n)=is_A000217(n)&&is_A001481(n) \\ _M. F. Hasler_, Nov 20 2017 %o A073613 (Python) %o A073613 from itertools import count, islice %o A073613 from sympy import factorint %o A073613 def A073613_gen(): # generator of terms %o A073613 return filter(lambda n:all(p & 3 != 3 or e & 1 == 0 for p, e in factorint(n).items()),(m*(m+1)//2 for m in count(0))) %o A073613 A073613_list = list(islice(A073613_gen(),30)) # _Chai Wah Wu_, Jun 28 2022 %Y A073613 Cf. A000217 (triangular numbers), A001481 (sums of two squares). %K A073613 easy,nonn %O A073613 1,3 %A A073613 _Jason Earls_, Aug 29 2002 %E A073613 Edited and initial 0 added by _M. F. Hasler_, Nov 20 2017