This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073633 #31 Aug 20 2021 22:49:33 %S A073633 1,2,3,16,43,50,56,193,283,961,970,4958,9439,10493,11375,18552,57051, %T A073633 81602,617287,917186,1525995,5107085,9162821,22008620 %N A073633 Numbers k that divide floor((3/2)^k) = A002379(k). %C A073633 No more terms through 10^6. - _Ryan Propper_, May 05 2006 %C A073633 The first 8 terms are all in A032863, all known subsequent terms, i.e., at least up to a(21), are not in A032863. - _M. F. Hasler_, Oct 05 2018 %t A073633 t = 1; Do[t = 3t/2; If[ Mod[ Floor[t], n] == 0, Print[n]], {n, 500000}] (* _Robert G. Wilson v_, Apr 06 2006 *) %o A073633 (PARI) a=1;for(n=1,10^6,a*=3;b=shift(a,-n);if(b%n==0,print1(n,","))) \\ _Robert Gerbicz_, Aug 23 2006 %o A073633 (PARI) P=1;for(n=1,oo,(P*=3)>>n%n||print1(n",")) \\ _M. F. Hasler_, Oct 05 2018 %o A073633 (Python) %o A073633 from gmpy2 import mpz, t_div_2exp, t_mod %o A073633 A073633_list, m = [], mpz(1) %o A073633 for n in range(1,10**9): %o A073633 m *= 3 %o A073633 if t_mod(t_div_2exp(m,n),n) == 0: %o A073633 A073633_list.append(n) # _Chai Wah Wu_, Mar 30 2020 %Y A073633 Cf. A002379, A073632, A073634. %K A073633 more,nonn %O A073633 1,2 %A A073633 _Benoit Cloitre_, Aug 29 2002 %E A073633 More terms from _Michel ten Voorde_ Jun 20 2003 %E A073633 2 more terms from _Ryan Propper_, May 05 2006 %E A073633 More terms from _Robert Gerbicz_, Aug 23 2006 %E A073633 a(22)-a(24) from _Chai Wah Wu_, Mar 30 2020