This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073643 #16 Aug 04 2022 15:04:16 %S A073643 102345689,102345697,102345869,102346789,102346879,102346897, %T A073643 102346957,102347689,102348679,102348769,102349867,102354689, %U A073643 102354697,102356489,102356789,102356987,102358769,102358967,102364859,102364879,102365897 %N A073643 Nine-digit primes with all distinct digits. %C A073643 The number of distinct-digit primes are finite. E.g. there are exactly 145227 such nine-digit primes from 102345689 to 987654103. %C A073643 All terms have exactly one "0" because nine-digit zero-less numbers with all distinct digits are divisible by 9. - _Zak Seidov_, Mar 15 2015 %H A073643 Zak Seidov, <a href="/A073643/b073643.txt">Table of n, a(n) for n = 1..10000</a> %e A073643 a(1)=102345689 because 102345689 is the smallest 9-digit prime with all distinct digits. %o A073643 (Python) %o A073643 from sympy import isprime %o A073643 from itertools import permutations as perms %o A073643 nines = (int("".join(p)) for p in perms("0123456789", 9) if p[0] != "0") %o A073643 afull = [k for k in nines if isprime(k)] %o A073643 print(afull[:24]) # _Michael S. Branicky_, Aug 04 2022 %Y A073643 For 3-digit distinct-digit primes, see A074675, A074676. %Y A073643 4-digit distinct-digit primes are in A074673, see also A074674. %Y A073643 5-digit distinct-digit primes are in A074671, see also A074672. %Y A073643 6-digit distinct-digit primes are in A074669, see also A074670. %Y A073643 7-digit distinct-digit primes are in A074667, see also A074668. %Y A073643 8-digit distinct-digit primes are in A074665, see also A074666. %K A073643 fini,nonn,base %O A073643 1,1 %A A073643 _Zak Seidov_, Aug 29 2002