cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073710 Convolution of A073709, which is also the first differences of the unique terms of A073709.

This page as a plain text file.
%I A073710 #10 Jun 14 2013 09:45:44
%S A073710 1,2,7,12,35,58,133,208,450,692,1358,2024,3822,5620,10018,14416,25025,
%T A073710 35634,59591,83548,136955,190362,303725,417088,655128,893168,1374632,
%U A073710 1856096,2820456,3784816,5658968,7533120,11144042,14754964,21542374
%N A073710 Convolution of A073709, which is also the first differences of the unique terms of A073709.
%C A073710 First differences consist of duplicated terms: {1, 1, 5, 5, 23, 23, 75, 75, 242, 242, 666, 666, 1798, 1798, ...}; the convolution of these first differences results in: {1, 2, 11, 20, 81, 142, 451, 760, 2143, 3526, 8965, ...}, which in turn has first differences that consist of duplicated terms: {1, 1, 9, 9, 61, 61, 309, 309, ...}.
%H A073710 Reinhard Zumkeller, <a href="/A073710/b073710.txt">Table of n, a(n) for n = 0..10000</a>
%F A073710 Let f(x) = sum_{n=0..inf} A073709(n) x^n, then f(x) satisfies f(x)^2 = sum_{n=0..inf} a(n) x^n, as well as the functional equation f(x^2)^2 = (1 - x)*f(x).
%e A073710 (1 +x +3x^2 +3x^3 +10x^4 +10x^5 +22x^6 +22x^7 +57x^8 +57x^9 +...)^2 = (1 +2x +7x^2 +12x^3 +35x^4 +58x^5 +133x^6 +208x^7 +450x^8 +...) and the first differences of the unique terms {1,3,10,22,57,...} is {1,2,7,12,35,...}.
%t A073710 max = 70; f[x_] := Sum[ a[k]*x^k, {k, 0, max}]; a[0] = a[1] = 1; coes = CoefficientList[ Series[ f[x^2]^2 - (1 - x)*f[x], {x, 0, max}], x]; A073709 = Table[a[k], {k, 0, max}] /. Solve[ Thread[coes == 0]] // First; A073709 // Union // Differences // Prepend[#, 1]&
%o A073710 (Haskell)
%o A073710 a073710 n = a073710_list !! n
%o A073710 a073710_list = conv a073709_list [] where
%o A073710    conv (v:vs) ws = (sum $ zipWith (*) ws' $ reverse ws') : conv vs ws'
%o A073710                     where ws' = v : ws
%o A073710 -- _Reinhard Zumkeller_, Jun 13 2013
%Y A073710 Cf. A073707, A073708, A073709.
%K A073710 easy,nice,nonn
%O A073710 0,2
%A A073710 _Paul D. Hanna_, Aug 05 2002