cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073711 G.f. satisfies: A(x) = A(x^2) + x*A(x^2)^2.

This page as a plain text file.
%I A073711 #34 Jul 19 2016 10:50:04
%S A073711 1,1,1,2,1,3,2,6,1,7,3,12,2,16,6,26,1,31,7,42,3,59,12,72,2,104,16,116,
%T A073711 6,184,26,186,1,303,31,282,7,497,42,406,3,783,59,612,12,1224,72,840,2,
%U A073711 1856,104,1232,16,2784,116,1656,6,4136,184,2376,26,6008,186,3138,1
%N A073711 G.f. satisfies: A(x) = A(x^2) + x*A(x^2)^2.
%C A073711 This sequence interlaced with its self-convolution yields the original sequence.
%H A073711 Reinhard Zumkeller, <a href="/A073711/b073711.txt">Table of n, a(n) for n = 0..10000</a>
%F A073711 a(2^k) = 1 and a(2^k*n) = a(n), with a(0) = 1, for k>=0 and n>=0.
%F A073711 a(2^n-1) = A211604(n) for n>=0.
%e A073711 a(0)=1, a(2^k)=1, a(3*2^k)=2, a(5*2^k)=3, a(7*2^k)=6, a(9*2^k)=7, for k>=0.
%e A073711 Self-convolution of [1,1,1,2,1,3,2,6,1,7,3,12,2,16,...] = [1,2,3,6,7,12,16,...], which forms the terms found at odd-indexed positions.
%t A073711 For[A = 1; n = 1, n <= 65, n++, A = (Normal[A] /. x -> x^2) + x*(Normal[A] /. x -> x^2)^2 + O[x]^n]; CoefficientList[A, x] (* _Jean-François Alcover_, Mar 06 2013, updated Apr 23 2016 *)
%o A073711 (Haskell)
%o A073711 import Data.List (transpose)
%o A073711 a073711 n = a073711_list !! n
%o A073711 a073711_list = 1 :
%o A073711 (tail $ concat $ transpose [a073711_list, a073712_list])
%o A073711 -- _Reinhard Zumkeller_, Dec 20 2012
%o A073711 (PARI) a(n)=local(A=1); for(i=0,#binary(n), A=subst(A,x,x^2+x*O(x^n))+x*subst(A,x,x^2+x*O(x^n))^2); polcoeff(A,n)
%o A073711 for(n=0,65,print1(a(n),", ")) \\ _Paul D. Hanna_, Dec 21 2012
%Y A073711 Cf. A073712 (self convolution), A194279, A211604.
%K A073711 easy,nice,nonn
%O A073711 0,4
%A A073711 _Paul D. Hanna_, Aug 05 2002
%E A073711 Name changed and entry revised by _Paul D. Hanna_, Dec 21 2012