A073726 Primitive irreducible trinomials: x^n + x^k + 1 is a primitive irreducible polynomial (mod 2) for some k with 0 < k < n.
2, 3, 4, 5, 6, 7, 9, 10, 11, 15, 17, 18, 20, 21, 22, 23, 25, 28, 29, 31, 33, 35, 36, 39, 41, 47, 49, 52, 55, 57, 58, 60, 63, 65, 68, 71, 73, 79, 81, 84, 87, 89, 93, 94, 95, 97, 98, 100, 103, 105, 106, 108, 111, 113, 118, 119, 121, 123, 124, 127, 129, 130, 132, 134, 135, 137, 140, 142, 145, 148, 150, 151, 153, 159, 161, 167, 169, 170, 172, 174, 175, 177, 178, 183, 185, 191, 193, 194, 198, 199, 201
Offset: 1
References
- S. W. Golomb, "Shift Register Sequences", revised edition, reprinted by Aegean Park Press, 1982. See Tables V-1, V-2.
Links
- Joerg Arndt, Complete list of primitive trinomials over GF(2) up to degree 400.
- Joerg Arndt, Complete list of primitive trinomials over GF(2) up to degree 400 [Cached copy, with permission]
- A. J. Menezes, P. C. van Oorschot and S. A. Vanstone, Handbook of Applied Cryptography, CRC Press, 1996; see Table 4.8.
- Index entries for sequences related to trinomials over GF(2)
Crossrefs
Programs
-
Magma
A073726 := function(n) for k := 1 to n-1 do if IsPrimitive(x^n+x^k+1) then return true; end if; end for; return false; end function; l := []; for n := 1 to 100 do if A073726(n) then l := Append(l,n); end if; end for; l;
-
Maple
A073726 := proc(n) local k,m: option remember: if(n=1)then return 2: else m:=procname(n-1)+1: while(true)do for k from 1 to m-1 do if Primitive(x^m+x^k+1) mod 2 then return m: fi: od: m:=m+1: od: fi: end: seq(A073726(n),n=1..20); # Nathaniel Johnston, Apr 26 2011
-
Mathematica
okQ[n_] := AnyTrue[Range[n-1], PrimitivePolynomialQ[x^n + x^# + 1, 2]&]; Select[Range[201], okQ] (* Jean-François Alcover, Aug 19 2019 *)
Extensions
a(49)-a(58) from Nathaniel Johnston, Apr 26 2011
Comments