cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073745 Decimal expansion of csch(1).

Original entry on oeis.org

8, 5, 0, 9, 1, 8, 1, 2, 8, 2, 3, 9, 3, 2, 1, 5, 4, 5, 1, 3, 3, 8, 4, 2, 7, 6, 3, 2, 8, 7, 1, 7, 5, 2, 8, 4, 1, 8, 1, 7, 2, 4, 6, 6, 0, 9, 1, 0, 3, 3, 9, 6, 1, 6, 9, 9, 0, 4, 2, 1, 1, 5, 1, 7, 2, 9, 0, 0, 3, 3, 6, 4, 3, 2, 1, 4, 6, 5, 1, 0, 3, 8, 9, 9, 7, 3, 0, 1, 7, 7, 3, 2, 8, 8, 9, 3, 8, 1, 2, 3, 6, 2, 4, 4
Offset: 0

Views

Author

Rick L. Shepherd, Aug 07 2002

Keywords

Comments

csch(x) = 2/(e^x - e^(-x)).
By the Lindemann-Weierstrass theorem, this constant is transcendental. - Charles R Greathouse IV, May 14 2019

Examples

			0.85091812823932154513384276328...
		

References

  • Samuel M. Selby (ed.), CRC Basic Mathematical Tables, CRC Press, 1970, p. 218.

Crossrefs

Cf. A068139 (continued fraction), A073742 (sinh(1)=1/A073745), A073743 (cosh(1)), A073744 (tanh(1)), A073746 (sech(1)), A073747 (coth(1)).

Programs

  • Mathematica
    RealDigits[Csch[1], 10, 100][[1]] (* Amiram Eldar, May 15 2021 *)
  • PARI
    1/sinh(1)

Formula

Equals Sum_{k>=0} B(2*k) * (2 - 2^(2*k)) / (2*k)!, where B(k) is the k-th Bernoulli number. - Amiram Eldar, May 15 2021