cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073751 Prime numbers that when multiplied in order yield the sequence of colossally abundant numbers A004490.

This page as a plain text file.
%I A073751 #43 Feb 16 2025 08:32:46
%S A073751 2,3,2,5,2,3,7,2,11,13,2,3,5,17,19,23,2,29,31,7,3,37,41,43,2,47,53,59,
%T A073751 5,61,67,71,73,11,79,2,83,3,89,97,13,101,103,107,109,113,127,131,137,
%U A073751 139,2,149,151,7,157,163,167,17,173,179,181,191,193,197,199,19,211,3
%N A073751 Prime numbers that when multiplied in order yield the sequence of colossally abundant numbers A004490.
%C A073751 The Mathematica program presents a very fast method of computing the factors of colossally abundant numbers. The 100th number has a sigma(n)/n ratio of 10.5681.
%C A073751 This calculation assumes that the ratio of consecutive colossally abundant numbers is always prime, which is implied by a conjecture mentioned in Lagarias's paper.
%C A073751 The ratio of consecutive colossally abundant numbers is prime for at least the first 10^7 terms. The (10^7)-th term is a 77908696-digit number which has a sigma(n)/n value of 33.849.
%C A073751 Alaoglu and Erdős's paper proves that the quotient of two consecutive colossally abundant numbers is either a prime or the product of two distinct primes.
%C A073751 From _Robert G. Wilson v_, May 30 2014: (Start)
%C A073751 First occurrence of the n-th prime: 1, 2, 4, 7, 9, 10, 14, 15, 16, 18, 19, 22, 23, 24, 26, 27, 28, 30, 31, 32, ..., .
%C A073751 Positions of 2: 1, 3, 5, 8, 11, 17, 25, 36, 51, 77, 114, 178, 282, 461, 759, 1286, 2200, 3812, 6664, ..., .
%C A073751 Positions of 3: 2, 6, 12, 21, 38, 68, 132, 271, 595, 1356, 3191, 7775, ..., . (End)
%H A073751 T. D. Noe, <a href="/A073751/b073751.txt">Table of n, a(n) for n = 1..10000</a>
%H A073751 L. Alaoglu and P. Erdos, <a href="http://www.renyi.hu/~p_erdos/1944-03.pdf">On highly composite and similar numbers,</a> Trans. Amer. Math. Soc., 56 (1944), 448-469. <a href="http://upforthecount.com/math/errata.html">Errata</a>
%H A073751 Keith Briggs, <a href="http://projecteuclid.org/euclid.em/1175789744">Abundant numbers and the Riemann Hypothesis</a>, Experimental Math., Vol. 16 (2006), p. 251-256.
%H A073751 Young Ju Choie; Nicolas Lichiardopol; Pieter Moree; Patrick Solé, <a href="https://doi.org/10.5802/jtnb.591">On Robin's criterion for the Riemann hypothesis</a>, Journal de théorie des nombres de Bordeaux, 19 no. 2 (2007), pp. 357-372.
%H A073751 J. C. Lagarias, <a href="https://arxiv.org/abs/math/0008177">An elementary problem equivalent to the Riemann hypothesis</a>, arXiv:math/0008177 [math.NT], 2000-2001; Am. Math. Monthly 109 (#6, 2002), 534-543.
%H A073751 T. Schwabhäuser, <a href="http://arxiv.org/abs/1308.3678">Preventing Exceptions to Robin's Inequality</a>, arXiv preprint arXiv:1308.3678 [math.NT], 2013.
%H A073751 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/ColossallyAbundantNumber.html">Colossally Abundant Number</a>
%t A073751 pFactor[f_List] := Module[{p=f[[1]], k=f[[2]]}, N[Log[(p^(k+2)-1)/(p^(k+1)-1)]/Log[p]]-1]; maxN=100; f={{2, 1}, {3, 0}}; primes=1; lst={2}; x=Table[pFactor[f[[i]]], {i, primes+1}]; For[n=2, n<=maxN, n++, i=Position[x, Max[x]][[1, 1]]; AppendTo[lst, f[[i, 1]]]; f[[i, 2]]++; If[i>primes, primes++; AppendTo[f, {Prime[i+1], 0}]; AppendTo[x, pFactor[f[[ -1]]]]]; x[[i]]=pFactor[f[[i]]]]; lst
%Y A073751 Cf. A004490.
%K A073751 nonn
%O A073751 1,1
%A A073751 _T. D. Noe_, Aug 07 2002