A073795 Replace 8^k with (-8)^k in base 8 expansion of n.
0, 1, 2, 3, 4, 5, 6, 7, -8, -7, -6, -5, -4, -3, -2, -1, -16, -15, -14, -13, -12, -11, -10, -9, -24, -23, -22, -21, -20, -19, -18, -17, -32, -31, -30, -29, -28, -27, -26, -25, -40, -39, -38, -37, -36, -35, -34, -33, -48, -47, -46, -45, -44, -43, -42, -41, -56, -55, -54, -53, -52, -51, -50, -49
Offset: 0
Links
- Dana G. Korssjoen, Biyao Li, Stefan Steinerberger, Raghavendra Tripathi, and Ruimin Zhang, Finding structure in sequences of real numbers via graph theory: a problem list, arXiv:2012.04625, Dec 08, 2020
Crossrefs
Programs
-
Mathematica
f[n_Integer, b_Integer] := Block[{l = IntegerDigits[n]}, Sum[l[[ -i]]*(-b)^(i - 1), {i, 1, Length[l]}]]; a = Table[ FromDigits[ IntegerDigits[n, 8]], {n, 0, 80}]; b = {}; Do[b = Append[b, f[a[[n]], 8]], {n, 1, 80}]; b
Formula
a(8*k+m) = -8*a(k)+m for 0 <= m < 8. - Chai Wah Wu, Jan 16 2020
Comments