This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073798 #17 Jan 28 2020 00:29:38 %S A073798 2,3,4,7,8,9,10,19,20,21,22,53,54,55,56,57,58,131,132,133,134,135,136, %T A073798 311,312,719,720,721,722,723,724,725,726,1619,1620,3671,3672,8161, %U A073798 8162,8163,8164,8165,8166,17863,17864,17865,17866,17867,17868,17869,17870 %N A073798 pi(n) is a power of 2, where pi(n) = A000720(n) is the number of primes <= n. %C A073798 The numbers occur in blocks of consecutive integers: 2, 3-4, 7-10, 19-22, ...; the n-th block starts at the 2^n-th prime (A033844) and ends just before the (2^n + 1)-th prime (A051439). %H A073798 Chai Wah Wu, <a href="/A073798/b073798.txt">Table of n, a(n) for n = 1..1103</a> (n = 1..665 from Ivan Neretin) %e A073798 10 is in the sequence since pi(10)=4=2^2. %t A073798 pow2[n_] := n==1||(n>1&&IntegerQ[n/2]&&pow2[n/2]); Select[Range[20000], pow2[PrimePi[ # ]]&] %t A073798 Flatten@Table[Range[p = Prime[2^k], NextPrime[p] - 1], {k, 0, 11}] (* _Ivan Neretin_, Jan 21 2017 *) %o A073798 (PARI) isok(n) = my(pi = primepi(n)); (pi==1) || (pi==2) || (ispower(primepi(n),,&k) && (k==2)); \\ _Michel Marcus_, Jan 23 2017 %Y A073798 Cf. A000079, A000720, A015910, A073797, A073799. %K A073798 nonn %O A073798 1,1 %A A073798 _Labos Elemer_, Aug 14 2002 %E A073798 Edited by _Dean Hickerson_, Aug 15 2002