cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073814 a(n) is the smallest number k such that A073813(k) = prime(n).

This page as a plain text file.
%I A073814 #20 Mar 29 2016 08:43:16
%S A073814 2,4,15,33,90,129,227,288,429,694,798,1149,1417,1565,1879,2399,2993,
%T A073814 3201,3879,4365,4623,5429,6002,6920,8245,8948,9314,10067,10457,11245,
%U A073814 14251,15184,16627,17130,19711,20253,21919,23653,24845,26687,28604,29248,32612,33303,34719,35436,39893,44622,46254
%N A073814 a(n) is the smallest number k such that A073813(k) = prime(n).
%F A073814 Min{x; c[x]-Max[URS[c[x]]]=p(n)}, p(n)=n-th prime. See program.
%e A073814 a(6)=129 means that c[129]-Max[URS[c[129]]=Prime[6]: c[129]=169, Max[URS[169]]=Max{26,39,...,143,156}=156; difference=169-156=13=6th prime. Suspicion: A073813(n) is always prime number!
%t A073814 c[x_] := FixedPoint[x+PrimePi[ # ]+1&, x]; tn[x_] := Table[j, {j, 1, x}]; di[x_] := Divisors[x]; rrs[x_] := Flatten[Position[GCD[tn[x], x], 1]]; rs[x_] := Union[rrs[x], di[x]]; urs[x_] := Complement[tn[x], rs[x]]; Do[s=c[n]-Max[urs[c[n]]]; If[s<101&&t[[s]]==0, t[[s]]=n], {n, 1, 10}]; t
%t A073814 nn = 6 * 10^4; s = Function[k, k - SelectFirst[Range[k - 2, 2, -1], 1 < GCD[#, k] < # &]] /@ Select[Range[6, nn], ! PrimeQ@ # &]; Table[SelectFirst[Range@ Length@ s, s[[# - 1]] == Prime@ n &], {n, 49}] (* _Michael De Vlieger_, Mar 28 2016, Version 10 *)
%Y A073814 Cf. A045763, A073759, A002808, A073813.
%Y A073814 Cf. A120389. [From _R. J. Mathar_, Aug 07 2008]
%K A073814 nonn
%O A073814 1,1
%A A073814 _Labos Elemer_, Aug 15 2002
%E A073814 Definition corrected by _Gionata Neri_, Mar 28 2016
%E A073814 More terms from _Michael De Vlieger_, Mar 28 2016