This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073832 #24 Aug 14 2024 08:37:15 %S A073832 4,7,13,23,37,53,67,97,103,131,139,173,181,193,223,233,263,277,307, %T A073832 337,409,421,457,509,563,593,613,631,653,797,811,823,853,877,1013, %U A073832 1021,1039,1051,1087,1129,1223,1259,1283,1297,1307,1423,1447,1471,1483,1601 %N A073832 k between A001359(n) and A001359(n+1) such that A073830(k) is maximal. %C A073832 A073830(a(n)) = A073831(n). %H A073832 Michael S. Branicky, <a href="/A073832/b073832.txt">Table of n, a(n) for n = 1..2600</a> %p A073832 A073832 := proc(n) %p A073832 local k,kmx,a ; %p A073832 kmx := 0 ; %p A073832 a := A001359(n)+1 ; %p A073832 for k from A001359(n)+1 to A001359(n+1)-1 do %p A073832 if A073830(k) > kmx then %p A073832 a := k ; %p A073832 kmx := A073830(k) ; %p A073832 end if; %p A073832 end do: %p A073832 a ; %p A073832 end proc: %p A073832 seq(A073832(n),n=1..50) ; # _R. J. Mathar_, Feb 21 2017 %t A073832 f[n_] := Mod[4*((n - 1)! + 1) + n, n*(n + 2)]; %t A073832 pp = Select[Prime[Range[300]], PrimeQ[# + 2] & ]; %t A073832 a[n_] := MaximalBy[Range[pp[[n]], pp[[n + 1]]], f]; %t A073832 Array[a, Length[pp] - 1] // Flatten (* _Jean-François Alcover_, Feb 22 2018 *) %o A073832 (Python) %o A073832 from math import factorial %o A073832 from itertools import islice, pairwise %o A073832 from sympy import isprime, nextprime, primerange %o A073832 def f(n): return (4*(factorial(n-1) + 1) + n)%(n*(n + 2)) %o A073832 def bgen(): # generator of A001359 %o A073832 p, q = 2, 3 %o A073832 while True: %o A073832 if q - p == 2: yield p %o A073832 p, q = q, nextprime(q) %o A073832 def agen(): # generator of terms %o A073832 for p, q in pairwise(bgen()): %o A073832 yield max((f(k), k) for k in range(p+1, q))[1] %o A073832 print(list(islice(agen(), 80))) # _Michael S. Branicky_, Aug 13 2024 %K A073832 nonn %O A073832 1,1 %A A073832 _Reinhard Zumkeller_, Aug 12 2002