cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073901 Number of primes with nonzero digits and digit sum n.

This page as a plain text file.
%I A073901 #52 Feb 21 2024 12:17:51
%S A073901 0,2,1,3,7,0,29,27,0,90,234,0,753,1025,0,3876,9242,0,32549,50112,0,
%T A073901 180092,420318,0,1525141,2467286,0,9248093,20668960,0,76318859,
%U A073901 130130794,0,487397935,1066434006,0
%N A073901 Number of primes with nonzero digits and digit sum n.
%C A073901 a(3k) = 0 for all k>1.
%C A073901 The number of candidates to consider for a(n) (i.e. the number of integers with nonzero digits and digit sum n) is A104144(n+8). - _Robert Israel_, Jun 05 2015
%H A073901 Manfred Scheucher, <a href="/A073901/a073901.sage.txt">Sage Script</a>
%H A073901 Rémy Sigrist, <a href="/A073901/a073901.gp.txt">PARI program</a>
%e A073901 a(2) = 2: the two primes are 2 and 11. a(5) = 7: the primes are 5, 41, 23, 113, 131, 311 and 2111.
%p A073901 S[1,1]:= [1]:
%p A073901 for x from 2 to 9 do S[1,x]:= [] od:
%p A073901 a[1]:= 0: a[2]:= 2:
%p A073901 for n from 2 to 22 do
%p A073901   for x from 2 to 9 do S[n,x]:= map(`+`,S[n-1,x-1],1) od:
%p A073901   S[n,1]:= [seq(op(map(t -> 10*t+1, S[n-1,x])),x=1..9)];
%p A073901   if n > 3 and n mod 3 = 0 then a[n]:= 0
%p A073901   else
%p A073901     if n > 5 then X:= [1,3,7,9] else X:= [$1..9] fi;
%p A073901     a[n]:= add(numboccur(map(isprime,S[n,x]),true),x=X);
%p A073901   fi
%p A073901 od:
%p A073901 seq(a[n],n=1..22); # _Robert Israel_, Jun 05 2015
%t A073901 f[n_] := If[ Mod[n, 3] == 0 && n > 3, 0, Block[{ip = IntegerPartitions@ n, lng = 1 + PartitionsP@ n, cnt = 0, k = 1}, While[k < lng, If[ Max@ ip[[k]] < 10, cnt += Length@ Select[ FromDigits@# & /@ Permutations@ ip[[k]], PrimeQ]]; k++]; cnt]]; Array[f, 30] (* _Robert G. Wilson v_, Jun 05 2015 *)
%t A073901 DigitSum[n_, b_:10] := Total[IntegerDigits[n, b]];nextodd[c_] := If[ Length[c]==2, Join[ Table[1, {c[[1]]-2}], {c[[2]]+2}], Join[ Table[1, {c[[1]]-1}], {c[[2]]+1}, Drop[c, 2]]]; a[2]=2; a[n_] := If[Mod[n, 3]==0 && n>3, 0, Module[{c, ct}, For[ c = Table[1, {n}]; ct = 0, True, c = nextodd[c], If[ PrimeQ[ FromDigits[c]] && DigitSum[FromDigits[c]]==n, ct++ ]; If[ c[[ -1]] >= n-1, Return[ct]] ] ]]; Table[ a[n], {n, 20}]
%o A073901 (PARI) See Links section.
%o A073901 (Python)
%o A073901 from collections import Counter
%o A073901 from sympy.utilities.iterables import partitions, multiset_permutations
%o A073901 from sympy import isprime
%o A073901 def A073901(n): return sum(1 for p in partitions(n,k=9) for a in multiset_permutations(Counter(p).elements()) if isprime(int(''.join(str(d) for d in a)))) if n==3 or n%3 else 0 # _Chai Wah Wu_, Feb 21 2024
%Y A073901 Not the same as A116381.
%Y A073901 Cf. A104144.
%K A073901 base,more,nonn
%O A073901 1,2
%A A073901 _Amarnath Murthy_, Aug 18 2002
%E A073901 Edited and extended by _Robert G. Wilson v_, Sep 19 2002
%E A073901 a(20) to a(24) and alternate Mathematica coding from _Dean Hickerson_, Sep 21 2002
%E A073901 a(25) from _Robert G. Wilson v_, Sep 26 2002
%E A073901 a(26)-a(31) from _Robert G. Wilson v_, Nov 14 2005
%E A073901 Corrected and edited by _Manfred Scheucher_, Jun 01 2015
%E A073901 a(32)-a(33) from _Rémy Sigrist_, Nov 17 2022
%E A073901 a(34)-a(36) from _Michael S. Branicky_, Jul 03 2023