A073910 Smallest number m such that m and the product of digits of m are both divisible by 3n, or 0 if no such number exists.
3, 6, 9, 168, 135, 36, 273, 168, 999, 0, 0, 1296, 0, 378, 495, 384, 0, 1296, 0, 0, 1197, 0, 0, 1368, 3525, 0, 2997, 672, 0, 0, 0, 384, 0, 0, 735, 1296, 0, 0, 0, 0, 0, 3276, 0, 0, 3915, 0, 0, 3168, 7497, 0, 0, 0, 0, 5994, 0, 7896, 0, 0, 0, 0, 0, 0, 7938, 2688, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
f := 3:for i from 1 to 1000 do b := ifactors(f*i)[2]: if b[nops(b)][1]>9 or (f*i mod 10) =0 then a[i] := 0:else j := 0:while true do j := j+f*i:c := convert(j,base,10):d := product(c[k],k=1..nops(c)): if (d mod f*i)=0 and d>0 then a[i] := j:break:fi:od:fi:od:seq(a[k],k=1..1000);
Formula
a(n) = A085124(3*n). - R. J. Mathar, Jun 21 2018
Extensions
More terms from Sascha Kurz, Aug 23 2002
Comments