cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073929 a(1) = 1, a(n) = smallest number not included earlier such that the n-th partial sum (n>1) is divisible by n+1.

Original entry on oeis.org

1, 2, 5, 7, 3, 10, 4, 13, 15, 6, 18, 20, 8, 23, 9, 26, 28, 11, 31, 12, 34, 36, 14, 39, 41, 16, 44, 17, 47, 49, 19, 52, 54, 21, 57, 22, 60, 62, 24, 65, 25, 68, 70, 27, 73, 75, 29, 78, 30, 81, 83, 32, 86, 33, 89, 91, 35, 94, 96, 37, 99, 38, 102, 104, 40, 107, 109, 42, 112, 43
Offset: 1

Views

Author

Amarnath Murthy, Aug 19 2002

Keywords

Comments

a(n) = A002251(n) for 2 < n < 10000. - Georg Fischer, Oct 19 2018

Examples

			4 divides 1+2+5, but does not divide 1+2+3 or 1+2+4, so a(3)=5.
		

Crossrefs

Programs

  • Maple
    s := {1}:summe := 1:a[1] := 1:for j from 2 to 1000 do b := (j+1)-(summe mod (j+1)); i := 0:while(true) do if nops(s union {b+i*(j+1)})-nops(s)=1 then break; fi; i := i+1; od:a[j] := b+i*(j+1):s := s union {b+i*(j+1)}:summe := summe+a[j]:od:c := seq(a[k],k=1..1000);
  • Mathematica
    Nest[Append[#, Block[{k = 2}, While[Nand[FreeQ[#, k], Mod[Total@ # + k, Length@ # + 2] == 0], k++]; k]] &, {1}, 69] (* Michael De Vlieger, May 10 2018 *)
  • PARI
    vecA073929(n)={my(w=1,s=List(vector(100*n,u,u)),t);for(m=2,n,for(i=m,#s,if(!((w+s[i])%(m+1)),t=s[i];w+=t;listpop(s,i);listinsert(s,t,m);break)));Vec(s)[1..n]} \\ R. J. Cano, May 07 2018

Extensions

Corrected and edited by John W. Layman and Sascha Kurz, Aug 21 2002
Offset corrected by R. J. Cano, May 07 2018