This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A073946 #19 May 07 2021 12:52:35 %S A073946 9,36,81,121,361,625,961,3136,6724,8281,9604,10609,12996,13225,19881, %T A073946 25281,38025,39204,40000,43264,44944,45796,47961,60516,64009,79524, %U A073946 80089,80656,83521,86436,90000,93636,103684,117649,121801,129600 %N A073946 Squares k such that k + pi(k) is a prime. %H A073946 Robert Israel, <a href="/A073946/b073946.txt">Table of n, a(n) for n = 1..1000</a> %e A073946 a(1)=9, since 9 is a square, pi(9)=4 and 9+4=13 is a prime. %p A073946 select(t -> isprime(t + numtheory:-pi(t)), [seq(i^2,i=1..1000)]); # _Robert Israel_, Mar 21 2017 %t A073946 Select[Range[1000]^2, PrimeQ[# + PrimePi[#]] &] (* _Indranil Ghosh_, Mar 21 2017 *) %o A073946 (PARI) %o A073946 v=vector(1000); %o A073946 for(n=1, 1000, v[n] = n^2); %o A073946 for(n=1, 1000, if(isprime(v[n] + primepi(v[n])), print1(v[n],", "))) \\ _Indranil Ghosh_, Mar 21 2017 %o A073946 (Python) %o A073946 from sympy import primepi, isprime %o A073946 N = (x**2 for x in range(1, 1001)) %o A073946 print([n for n in N if isprime(n + primepi(n))]) # _Indranil Ghosh_, Mar 21 2017 %Y A073946 This sequence is a subsequence of sequence A077510. The corresponding sequence of primes is A113943 and the square roots of the original sequence is A113944. %K A073946 nonn %O A073946 1,1 %A A073946 _David Garber_, Nov 13 2002