cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A073961 Let R be the polynomial ring GF(2)[x]. Then a(n) = number of distinct products f*g with f,g in R and 1 <= deg(f),deg(g) <= n.

This page as a plain text file.
%I A073961 #8 Jul 10 2018 15:52:06
%S A073961 3,18,72,262,975,3562,13456,50765,194122,745526,2882670,11173191,
%T A073961 43485970,169656399,663259282,2598327983,10190686903,40038932993,
%U A073961 157431481559,619871680780,2442107519364,9632769554849,38008189079970,150127212826428,593141913076502
%N A073961 Let R be the polynomial ring GF(2)[x]. Then a(n) = number of distinct products f*g with f,g in R and 1 <= deg(f),deg(g) <= n.
%C A073961 _W. Edwin Clark_ computed the initial terms.
%F A073961 a(n) = A086908(n) - 1 - Sum_{i=0, n} A001037(i). - _Andrew Howroyd_, Jul 10 2018
%e A073961 From _Andrew Howroyd_, Jul 10 2018: (Start)
%e A073961 Case n=1: The following 3 polynomials can be represented:
%e A073961   x^2 = x*x,
%e A073961   x^2 + 1 = (x + 1)*(x+1),
%e A073961   x^2 + x = x*(x + 1).
%e A073961 (End)
%Y A073961 Cf. A001037, A027424, A086908.
%K A073961 nonn
%O A073961 1,1
%A A073961 Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 13 2003
%E A073961 a(9)-a(25) from _Andrew Howroyd_, Jul 10 2018