This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074028 #17 May 03 2019 07:21:51 %S A074028 0,0,1,1,2,2,4,6,13,24,48,85,160,288,541,1008,1920,3626,6912,13107, %T A074028 24989,47616,91136,174590,335462,645120,1242904,2396745,4628480, %U A074028 8947294,17317888,33552384,65074253,126320640,245428574,477218560,928645120,1808400384,3524068955 %N A074028 Number of binary Lyndon words of length n with trace 0 and subtrace 1 over Z_2. %C A074028 Same as the number of binary Lyndon words of length n with trace 0 and subtrace 1 over GF(2). %H A074028 Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI/GP scripts for miscellaneous math problems</a> %H A074028 F. Ruskey, <a href="http://combos.org/TSlyndonZ2">Binary Lyndon words with given trace and subtrace</a> %H A074028 F. Ruskey, <a href="http://combos.org/TSlyndonF2">Binary Lyndon words with given trace and subtrace over GF(2)</a> %F A074028 a(2n) = A042980(2n), a(2n+1) = A042979(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44. %e A074028 a(5;0,1)=2 since the two binary Lyndon words of trace 0, subtrace 1 and length 5 are { 00011, 00101 }. %Y A074028 Cf. A074027, A074029, A074030. %K A074028 easy,nonn %O A074028 1,5 %A A074028 _Frank Ruskey_ and Nate Kube, Aug 21 2002 %E A074028 Terms a(33) onward from _Max Alekseyev_, Apr 09 2013