This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074029 #21 Aug 21 2024 01:56:17 %S A074029 1,1,1,1,1,2,4,8,15,27,48,85,155,288,541,1024,1935,3654,6912,13107, %T A074029 24940,47616,91136,174760,335626,645435,1242904,2396745,4627915, %U A074029 8947294,17317888,33554432,65076240,126324495,245428574,477218560,928638035,1808400384,3524068955 %N A074029 Number of binary Lyndon words of length n with trace 1 and subtrace 0 over Z_2. %C A074029 Same as the number of binary Lyndon words of length n with trace 1 and subtrace 0 over GF(2). %H A074029 Max Alekseyev, <a href="http://home.gwu.edu/~maxal/gpscripts/">PARI/GP scripts for miscellaneous math problems</a> %H A074029 F. Ruskey, <a href="http://combos.org/TSlyndonZ2">Binary Lyndon words with given trace and subtrace</a> %H A074029 F. Ruskey, <a href="http://combos.org/TSlyndonF2">Binary Lyndon words with given trace and subtrace over GF(2)</a> %F A074029 a(2n) = A042982(2n), a(2n+1) = A049281(2n+1). This follows from Cattell et al. (see A042979), Main Theorem on p. 33 and Theorem 4 on p. 44. %e A074029 a(3;1,0)=1 since the one binary Lyndon word of trace 1, subtrace 0 and length 3 is { 001 }. %Y A074029 Cf. A074027, A074028, A074030. %K A074029 easy,nonn %O A074029 1,6 %A A074029 _Frank Ruskey_ and Nate Kube, Aug 21 2002 %E A074029 Terms a(33) onward from _Max Alekseyev_, Apr 09 2013