A074047 a(n)=a(n-1)*a(n-2)*a(n-3)*(1/a(n-1)+1/a(n-2)+1/a(n-3)) starting with a(1)=a(2)=a(3)=1.
1, 1, 1, 3, 7, 31, 331, 12795, 4642051, 60935796571, 283646808320375611, 17285560913056915909539455163, 4902995236325455290013100337511909917402705547
Offset: 1
Keywords
Examples
a(7)=31*7*3*(1/31+1/7+1/3)=331.
Crossrefs
Cf. A074046.
Programs
-
Mathematica
RecurrenceTable[{a[n]==a[n-1]*a[n-2]+a[n-3]*a[n-1]+a[n-2]*a[n-3],a[1]==1,a[2]==1,a[3]==1},a[n],{n,1,15}] (* Vaclav Kotesovec, Jan 20 2014 *)
Formula
a(n) tends towards a(n-1)^phi and 1.22376...^(phi^n) where phi=(1+sqrt(5))/2=1.6180339887...
a(n)=a(n-1)*a(n-2)+a(n-3)*a(n-1)+a(n-2)*a(n-3). - M. F. Hasler, Jan 01 2013
Comments