This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074058 #17 Jan 28 2023 12:43:17 %S A074058 4,-1,-1,-1,7,-6,-1,-1,15,-19,4,-1,31,-53,27,-6,63,-137,107,-39,132, %T A074058 -337,351,-185,303,-806,1039,-721,791,-1915,2884,-2481,2303,-4621, %U A074058 7683,-7846,7087,-11545,19987,-23375,22020,-30177,51519,-66737,67415,-82374,133215,-184993,201567,-232163,348804 %N A074058 Reflected tetranacci numbers A073817. %C A074058 Also a(n) is the trace of A^(-n), where A is the 4 X 4 matrix ((1,1,0,0), (1,0,1,0), (1,0,0,1), (1,0,0,0)). %D A074058 R. L. Graham, D. E. Knuth and O. Patashnik, "Concrete Mathematics", Addison-Wesley, Reading, MA, 1998. %H A074058 Indranil Ghosh, <a href="/A074058/b074058.txt">Table of n, a(n) for n = 0..8998</a> %H A074058 A. V. Zarelua, <a href="https://doi.org/10.1007/s11006-006-0090-y">On Matrix Analogs of Fermat's Little Theorem</a>, Mathematical Notes, vol. 79, no. 6, 2006, pp. 783-796. Translated from Matematicheskie Zametki, vol. 79, no. 6, 2006, pp. 840-855. %H A074058 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-1,-1,1). %F A074058 a(n) = -a(n-1)-a(n-2)-a(n-3)+a(n-4), a(0)=4, a(1)=-1, a(2)=-1, a(3)=-1. %F A074058 G.f.: (4+3x+2x^2+x^3)/(1+x+x^2+x^3-x^4). %F A074058 From _Peter Bala_, Jan 19 2023: (Start) %F A074058 a(n) = (-1)^n*A073937(n). %F A074058 The Gauss congruences hold: a(n*p^r) == a(n*p^(r-1)) (mod p^r) for positive integers n and r and all primes p. See Zarelua. (End) %t A074058 CoefficientList[Series[(4+3*x+2*x^2+x^3)/(1+x+x^2+x^3-x^4), {x, 0, 1}], x] %o A074058 (PARI) polsym(polrecip(1+x+x^2+x^3-x^4), 55) \\ _Joerg Arndt_, Jan 21 2023 %Y A074058 Cf. A073817, A073937. %K A074058 easy,sign %O A074058 0,1 %A A074058 Mario Catalani (mario.catalani(AT)unito.it), Aug 16 2002