This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074061 #77 Jan 18 2023 02:21:59 %S A074061 1,4,6,39,59,386,584,3821,5781,37824,57226,374419,566479,3706366, %T A074061 5607564,36689241,55509161,363186044,549484046,3595171199,5439331299, %U A074061 35588525946,53843828944,352290088261,532998958141,3487312356664 %N A074061 Positive integers k such that 24*k^2 - 23 is a square. %C A074061 Positive values of x (or y) satisfying x^2 - 10xy + y^2 + 23 = 0. - _Colin Barker_, Feb 09 2014 %H A074061 Vincenzo Librandi, <a href="/A074061/b074061.txt">Table of n, a(n) for n = 0..200</a> %H A074061 K. S. Brown, <a href="http://www.mathpages.com/home/kmath275.htm">Numbers Expressible as (a^2-1)(b^2-1)</a> %H A074061 <a href="/index/Tu#2wis">Index entries for two-way infinite sequences</a> %H A074061 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,10,0,-1). %F A074061 G.f.: (1 - x)*(1 + 5*x + x^2)/(1 - 10*x^2 + x^4). %F A074061 a(n) = 10*a(n-2) - a(n-4) = a(-1-n). %F A074061 a(2n-1) = round((1/2)*(1-(1/2)/sqrt(6))*(sqrt(2)+sqrt(3))^(2n)); a(2n)=round(c*(sqrt(2)+sqrt(3))^(2n+1)) with c = 0.191357750597... - _Benoit Cloitre_, Aug 22 2002 %t A074061 CoefficientList[Series[(1 - x) (1 + 5 x + x^2)/(1 - 10 x^2 + x^4), {x, 0, 30}], x] (* _Vincenzo Librandi_, Feb 10 2014 *) %t A074061 LinearRecurrence[{0,10,0,-1},{1,4,6,39},30] (* _Harvey P. Dale_, Jun 06 2015 *) %o A074061 (PARI) {a(n) = if( n<0, a(-1-n), polcoeff( (1 - x) * (1 + 5*x + x^2) / (1 - 10*x^2 + x^4) + x * O(x^n), n))} %o A074061 (Magma) I:=[1,4,6,39]; [n le 4 select I[n] else 10*Self(n-2)-Self(n-4): n in [1..30]]; // _Vincenzo Librandi_, Feb 10 2014 %K A074061 nonn,easy %O A074061 0,2 %A A074061 _Michael Somos_, Aug 19 2002