cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074078 Number of steps to reach an integer starting with s = n/3 and iterating the map x -> s*ceiling(x).

Original entry on oeis.org

0, 2, 4, 0, 1, 1, 0, 13, 2, 0, 3, 2, 0, 1, 1, 0, 2, 4, 0, 8, 5, 0, 1, 1, 0, 7, 9, 0, 2, 7, 0, 1, 1, 0, 3, 2, 0, 6, 2, 0, 1, 1, 0, 2, 3, 0, 10, 3, 0, 1, 1, 0, 3, 3, 0, 2, 3, 0, 1, 1, 0, 5, 2, 0, 5, 2, 0, 1, 1, 0, 2, 10, 0, 3, 7, 0, 1, 1, 0, 8, 4, 0, 2, 6, 0, 1, 1, 0, 5, 2, 0, 3, 2, 0, 1, 1, 0, 2, 5, 0, 4, 6, 0, 1, 1, 0
Offset: 3

Views

Author

N. J. A. Sloane, Sep 16 2002

Keywords

Examples

			s = 5/3 -> 10/3 -> 20/3 -> 35/3 -> 20, so a(5) = 4.
		

Crossrefs

Cf. A072340, A074090, A074091, A074096. Records are in A074097, A074098.
First integer reached: A081852.

Programs

  • Maple
    f := proc(b1,b2) local c1,c2,t1,t2,t3,t4,i; c1 := numer(b1/b2); c2 := denom(b1/b2); i := 0; while c2 <> 1 do i := i+1; t1 := ceil(c1/c2); t2 := b1*t1; t3 := t2/b2; c1 := numer(t3); c2 := denom(t3); od: RETURN(i); end; [seq(f(n,3),n=4..120)];
  • Mathematica
    ce[n_] := Length[NestWhileList[(n/3)*Ceiling[#] &, n/3, ! IntegerQ[#] &]] - 1; Table[ce[n], {n, 3, 108}] (* Jayanta Basu, Jul 30 2013 *)
  • Python
    from math import ceil
    from fractions import Fraction
    def a(n):
        s = Fraction(n, 3)
        x, c = s, 0
        while x.denominator != 1:
            U = ceil(x)
            x, c = U*s, c+1
        return c
    print([a(n) for n in range(3, 109)]) # Michael S. Branicky, Jan 09 2025