cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074082 Coefficient of q^2 in nu(n), where nu(0)=1, nu(1)=b and, for n>=2, nu(n)=b*nu(n-1)+lambda*(1+q+q^2+...+q^(n-2))*nu(n-2) with (b,lambda)=(1,1).

Original entry on oeis.org

0, 0, 0, 0, 2, 6, 16, 37, 81, 169, 342, 675, 1307, 2491, 4686, 8718, 16066, 29364, 53282, 96065, 172215, 307151, 545286, 963993, 1697701, 2979383, 5211852, 9090060, 15810530, 27429426, 47473828, 81983773, 141286221, 243011173
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 19 2002

Keywords

Comments

The coefficient of q^0 in nu(n) is the Fibonacci number F(n+1). The coefficient of q^1 is A023610(n-3).

Examples

			The first 6 nu polynomials are nu(0)=1, nu(1)=1, nu(2)=2, nu(3)=3+q, nu(4)=5+3q+2q^2, nu(5)=8+7q+6q^2+4q^3+q^4, so the coefficients of q^2 are 0,0,0,0,2,6.
		

Crossrefs

Coefficients of q^0, q^1 and q^3 are in A000045, A023610 and A074083. Related sequences with different values of b and lambda are in A074084-A074089.

Programs

  • Mathematica
    b=1; lambda=1; expon=2; nu[0]=1; nu[1]=b; nu[n_] := nu[n]=Together[b*nu[n-1]+lambda(1-q^(n-1))/(1-q)nu[n-2]]; a[n_] := Coefficient[nu[n], q, expon]
    (* Second program: *)
    Join[{0, 0}, LinearRecurrence[{3, 0, -5, 0, 3, 1}, {0, 0, 2, 6, 16, 37}, 32]] (* Jean-François Alcover, Sep 23 2017 *)

Formula

G.f.: (2*x^4-2*x^6-x^7)/(1-x-x^2)^3.
a(n) = 3*a(n-1)-5*a(n-3)+3*a(n-5)+a(n-6) for n>=8.

Extensions

Edited by Dean Hickerson, Aug 21 2002