A074112 Let omega(m) be the number of distinct prime divisors of m. Then a(n) is the largest n-digit squarefree number such that omega(n) > omega(j) for all j < n.
6, 78, 966, 9870, 99330, 930930, 9699690, 99953490, 999068070, 9592993410, 99978788910, 999890501610, 9814524629910, 99999887777790, 998448347106210, 9999999768941490, 99992911041433410, 997799870344687410, 9999839051940347610, 99987077573596883670
Offset: 1
Links
- Charlie Neder, Table of n, a(n) for n = 1..33
- Charlie Neder, Python program for computing this sequence
Programs
-
Maple
A074112 := proc(n) option remember; local a,o,wrks,j ; if n = 1 then return 6; end if; for a from 10^n-1 to 10^(n-2) by -1 do if numtheory[issqrfree](a) then o := omega(a) ; wrks := true; for j from 1 to n-1 do if omega(procname(j)) >= o then wrks := false; break; end if; end do: if wrks then return a; end if; end if; end do: return -1 ; end proc: for j from 1 do print( A074112(j)) ; end do: # R. J. Mathar, Oct 03 2014
Extensions
Corrected and extended by Matthew Conroy, Aug 27 2002
Definition corrected by R. J. Mathar, Oct 03 2014
a(8) to a(20) from Charlie Neder, Jan 15 2019