cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074140 Sum of least integers of prime signatures over all partitions of n.

This page as a plain text file.
%I A074140 #44 Feb 16 2025 08:32:47
%S A074140 1,2,10,50,346,3182,38770,609290,11226106,250148582,7057182250,
%T A074140 216512001950,7903965900226,321552174623162,13779150603234010,
%U A074140 644574260638821590,33968684108427733426,1994885097404292104942,121496572792097514728530,8114030083731371137603190
%N A074140 Sum of least integers of prime signatures over all partitions of n.
%C A074140 Old name was: Sum of terms in n-th group in A036035.
%C A074140 a(n) is also the sum of terms in n-th row of A063008, A087443 or A227955.
%H A074140 Peter Luschny and Alois P. Heinz, <a href="/A074140/b074140.txt">Table of n, a(n) for n = 0..350</a>
%H A074140 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSignature.html">Prime Signature</a>
%H A074140 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a>
%H A074140 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_signature">Prime signature</a>
%H A074140 <a href="/index/Pri#prime_signature">Index entries for sequences related to prime signature</a>
%e A074140 a(6) = 64+96+144+216+240+360+900+840+1260+4620+30030 = 38770.
%p A074140 b:= proc(n, i, j) option remember;
%p A074140       `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+
%p A074140       `if`(i>n, 0, ithprime(j)^i*b(n-i, i, j+1))))
%p A074140     end:
%p A074140 a:= n-> b(n$2, 1):
%p A074140 seq(a(n), n=0..40);  # _Alois P. Heinz_, Aug 03 2013
%t A074140 b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, If[i<1, 0, b[n, i-1, j]+If[i>n, 0, Prime[j]^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 25 2014, after _Alois P. Heinz_ *)
%o A074140 (Sage)
%o A074140 def A074140(n):
%o A074140     L = []
%o A074140     P = primes_first_n(n)
%o A074140     for p in Partitions(n):
%o A074140         m = mul(P[i]^pi for i, pi in enumerate(p))
%o A074140         L.append(m)
%o A074140     return add(L)
%o A074140 [A074140(n) for n in (0..20)]  # _Peter Luschny_, Aug 02 2013
%Y A074140 Cf. A036035, A063008, A074139, A074141, A025487, A087443, A227955, A332626.
%K A074140 nonn
%O A074140 0,2
%A A074140 _Amarnath Murthy_, Aug 28 2002
%E A074140 More terms from _Alford Arnold_, Sep 10 2002
%E A074140 a(10)-a(12) from Thomas A. Rockwell (LlewkcoRAT(AT)aol.com), Sep 30 2004
%E A074140 a(12) corrected by _Peter Luschny_, Aug 03 2013
%E A074140 New name from _Alois P. Heinz_, Aug 03 2013