This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074140 #44 Feb 16 2025 08:32:47 %S A074140 1,2,10,50,346,3182,38770,609290,11226106,250148582,7057182250, %T A074140 216512001950,7903965900226,321552174623162,13779150603234010, %U A074140 644574260638821590,33968684108427733426,1994885097404292104942,121496572792097514728530,8114030083731371137603190 %N A074140 Sum of least integers of prime signatures over all partitions of n. %C A074140 Old name was: Sum of terms in n-th group in A036035. %C A074140 a(n) is also the sum of terms in n-th row of A063008, A087443 or A227955. %H A074140 Peter Luschny and Alois P. Heinz, <a href="/A074140/b074140.txt">Table of n, a(n) for n = 0..350</a> %H A074140 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/PrimeSignature.html">Prime Signature</a> %H A074140 Wikipedia, <a href="https://en.wikipedia.org/wiki/Partition_(number_theory)">Partition (number theory)</a> %H A074140 Wikipedia, <a href="http://en.wikipedia.org/wiki/Prime_signature">Prime signature</a> %H A074140 <a href="/index/Pri#prime_signature">Index entries for sequences related to prime signature</a> %e A074140 a(6) = 64+96+144+216+240+360+900+840+1260+4620+30030 = 38770. %p A074140 b:= proc(n, i, j) option remember; %p A074140 `if`(n=0, 1, `if`(i<1, 0, b(n, i-1, j)+ %p A074140 `if`(i>n, 0, ithprime(j)^i*b(n-i, i, j+1)))) %p A074140 end: %p A074140 a:= n-> b(n$2, 1): %p A074140 seq(a(n), n=0..40); # _Alois P. Heinz_, Aug 03 2013 %t A074140 b[n_, i_, j_] := b[n, i, j] = If[n == 0, 1, If[i<1, 0, b[n, i-1, j]+If[i>n, 0, Prime[j]^i*b[n-i, i, j+1]]]]; a[n_] := b[n, n, 1]; Table[a[n], {n, 0, 20}] (* _Jean-François Alcover_, Feb 25 2014, after _Alois P. Heinz_ *) %o A074140 (Sage) %o A074140 def A074140(n): %o A074140 L = [] %o A074140 P = primes_first_n(n) %o A074140 for p in Partitions(n): %o A074140 m = mul(P[i]^pi for i, pi in enumerate(p)) %o A074140 L.append(m) %o A074140 return add(L) %o A074140 [A074140(n) for n in (0..20)] # _Peter Luschny_, Aug 02 2013 %Y A074140 Cf. A036035, A063008, A074139, A074141, A025487, A087443, A227955, A332626. %K A074140 nonn %O A074140 0,2 %A A074140 _Amarnath Murthy_, Aug 28 2002 %E A074140 More terms from _Alford Arnold_, Sep 10 2002 %E A074140 a(10)-a(12) from Thomas A. Rockwell (LlewkcoRAT(AT)aol.com), Sep 30 2004 %E A074140 a(12) corrected by _Peter Luschny_, Aug 03 2013 %E A074140 New name from _Alois P. Heinz_, Aug 03 2013