cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074193 Sum of determinants of 2nd order principal minors of powers of the matrix ((1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)).

This page as a plain text file.
%I A074193 #26 Dec 04 2020 21:11:57
%S A074193 6,-1,-3,-1,17,-16,-15,13,81,-127,-58,175,329,-885,-31,1424,833,-5543,
%T A074193 2181,9233,-2298,-31025,27893,49495,-54879,-150416,245697,204965,
%U A074193 -526887,-570895,1801670,407711,-3882303,-946397,11542929,-3442672,-24121039,10317745,64959629,-56727711,-127083514
%N A074193 Sum of determinants of 2nd order principal minors of powers of the matrix ((1,1,0,0),(1,0,1,0),(1,0,0,1),(1,0,0,0)).
%C A074193 From _Kai Wang_, Oct 21 2020: (Start)
%C A074193 Let f(x) = x^4 - x^3 - x^2 - x - 1 be the characteristic polynomial for Tetranacci numbers (A000078). Let {x1,x2,x3,x4} be the roots of f(x). Then a(n) = (x1*x2)^n + (x1*x3)^n + (x1*x4)^n + (x2*x3)^n + (x2*x4)^n + (x3*x4)^n.
%C A074193 Let g(y) = y^6 + y^5 + 2*y^4 + 2*y^3 - 2*y^2 + y - 1 be the characteristic polynomial for a(n). Let {y1,y2,y3,y4,y5,y6} be the roots of g(y). Then a(n) = y1^n + y2^n + y3^n + y4^n + y5^n + y6^n. (End)
%H A074193 Michael De Vlieger, <a href="/A074193/b074193.txt">Table of n, a(n) for n = 0..5052</a>
%H A074193 Kai Wang, <a href="https://doi.org/10.13140/RG.2.2.19649.79209">Identities, generating functions and Binet formula for generalized k-nacci sequences</a>, 2020.
%H A074193 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (-1,-2,-2,2,-1,1).
%F A074193 a(n) = -a(n-1)-2a(n-2)-2a(n-3)+2a(n-4)-a(n-5)+a(n-6).
%F A074193 G.f.: (6+5x+8x^2+6x^3-4x^4+x^5)/(1+x+2x^2+2x^3-2x^4+x^5-x^6).
%F A074193 abs(a(n)) = abs(A074453(n)). - _Joerg Arndt_, Oct 22 2020
%t A074193 CoefficientList[Series[(6+5*x+8*x^2+6*x^3-4*x^4+x^5)/(1+x+2*x^2+2*x^3-2*x^4+x^5-x^6), {x, 0, 50}], x]
%o A074193 (PARI) polsym(x^6 + x^5 + 2*x^4 + 2*x^3 - 2*x^2 + x - 1,44) \\ _Joerg Arndt_, Oct 22 2020
%Y A074193 Cf. A073817, A073937, A000078, A074081.
%K A074193 easy,sign
%O A074193 0,1
%A A074193 Mario Catalani (mario.catalani(AT)unito.it), Aug 20 2002