This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074200 #24 Feb 28 2019 18:52:20 %S A074200 1,2,12,12720,19440,5516280,5516280,7321991040,363500177040, %T A074200 2394196081200,3163427380990800,22755817971366480,3788978012188649280, %U A074200 2918756139031688155200 %N A074200 a(n) = m, the smallest number such that (m+k)/k is prime for k=1, 2, ..., n. %C A074200 Computed by Jack Brennen and Phil Carmody. %H A074200 Walter Nissen, <a href="http://upforthecount.com/math/pdor.html">Calculation without Words : Doric Columns of Primes</a>. %H A074200 C. Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_181.htm">Puzzle 181</a> %e A074200 (12+k)/k is prime for k = 1,2,3. 12 is the smallest such number so a(3) = 12. %t A074200 a[1] = 1; a[n_] := a[n] = For[dm = LCM @@ Range[n]; m = Quotient[a[n - 1], dm]*dm, True, m = m + dm, If[AllTrue[Range[n], PrimeQ[(m + #)/#] &], Return[m]]]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 1, 10}] (* _Jean-François Alcover_, Dec 01 2016 *) %o A074200 (PARI) isok(m, n) = {for (k = 1, n, if ((m+k) % k, return (0), if (! isprime((m+k)/k), return(0)));); return (1);} %o A074200 a(n) = {m = 1; while(! isok(m, n), m++); m;} \\ _Michel Marcus_, Aug 31 2013 %o A074200 (Python) %o A074200 from sympy import isprime, lcm %o A074200 def A074200(n): %o A074200 a = lcm(range(1,n+1)) %o A074200 m = a %o A074200 while True: %o A074200 for k in range(n,0,-1): %o A074200 if not isprime(m//k+1): %o A074200 break %o A074200 else: %o A074200 return m %o A074200 m += a # _Chai Wah Wu_, Feb 27 2019 %Y A074200 Cf. A078502, A278500. %Y A074200 One less than A093553. %K A074200 nonn,more %O A074200 1,2 %A A074200 Jean-Christophe Colin (jc-colin(AT)wanadoo.fr), Sep 17 2002, May 10 2010 %E A074200 Corrected by _Vladeta Jovovic_, Jan 08 2003 %E A074200 a(14) from _Jens Kruse Andersen_, Feb 15 2004