This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074215 #30 Aug 07 2020 10:04:43 %S A074215 1,2,3,4,7,8,9,11,13,14,16,17,19,21,22,23,26,27,28,29,31,32,33,34,37, %T A074215 38,39,41,43,44,46,47,49,51,52,53,57,58,59,61,62,63,64,67,68,69,71,73, %U A074215 74,76,77,79,81,82,83,86,87,88,89,92,93,94,97,98,99,101 %N A074215 Numbers m such that m and F(m) are relatively prime, where F(m) denotes the m-th Fibonacci number. %C A074215 Sanna and Tron proved that a(n) is asymptotic to c*n, for some constant c > 0. - _Carlo Sanna_, May 11 2017 %C A074215 For k from 1 to 9, a(10^k) is equal to 14, 154, 1553, 15578, 155786, 1557934, 15579574, 155796106, 1557962159. - _Giovanni Resta_, May 11 2017 %C A074215 The asymptotic density of this sequence is Sum_{k>=1} mu(k)/lcm(k, A001177(k)), where mu is the Möbius function (A008683) (Sanna and Tron, 2018). - _Amiram Eldar_, Aug 07 2020 %H A074215 Lars Blomberg, <a href="/A074215/b074215.txt">Table of n, a(n) for n = 1..10000</a> %H A074215 Carlo Sanna and Emanuele Tron, <a href="https://doi.org/10.1016/j.indag.2018.03.002">The density of numbers n having a prescribed G.C.D. with the nth Fibonacci number</a> Indagationes Mathematicae, Vol. 29, No. 3 (2018), pp. 972-980, <a href="https://arxiv.org/abs/1705.01805">preprint</a>, arXiv:1705.01805 [math.NT], 2017. %F A074215 a(n) is probably asymptotic to c*n with c=1.55(8)..... %t A074215 Select[Range[200], GCD[#, Fibonacci[#]] == 1 &] (* _T. D. Noe_, Jun 13 2012 *) %o A074215 (PARI) isok(n) = gcd(n, fibonacci(n)) == 1; \\ _Michel Marcus_, May 05 2017 %Y A074215 Cf. A000045, A001177, A008683, A104714. %K A074215 easy,nonn %O A074215 1,2 %A A074215 _Benoit Cloitre_, Sep 17 2002