This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074229 #13 Dec 24 2015 11:43:41 %S A074229 1,5,19,23,25,29,43,47,49,53,67,71,73,77,91,95,97,101,115,119,121,125, %T A074229 139,143,145,149,163,167,169,173,187,191,193,197,211,215,217,221,235, %U A074229 239,241,245,259,263,265,269,283,287,289,293,307,311,313,317,331,335 %N A074229 Numbers n such that Kronecker(6,n)==mu(gcd(6,n)). %H A074229 Colin Barker, <a href="/A074229/b074229.txt">Table of n, a(n) for n = 1..1000</a> %H A074229 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,1,-1). %F A074229 From _Colin Barker_, Dec 14 2015: (Start) %F A074229 a(n) = (3/2+(3*i)/2)*(i^n-i*(-i)^n)-(-1)^n+6*(n+1)-9 where i = sqrt(-1). %F A074229 a(n) = a(n-1) + a(n-4) - a(n-5) for n>5. %F A074229 G.f.: x*(1+4*x+14*x^2+4*x^3+x^4) / ((1-x)^2*(1+x)*(1+x^2)). %F A074229 (End) %o A074229 (PARI) for (x=1,200, for (y=1,200,if (kronecker(x,y)==moebius(gcd(x,y)),write("km.txt",x,";",y," : ",kronecker(x,y))))) %o A074229 (PARI) isok(n) = kronecker(6, n) == moebius(gcd(6, n)); \\ _Michel Marcus_, Mar 17 2014 %o A074229 (PARI) Vec(x*(1+4*x+14*x^2+4*x^3+x^4)/((1-x)^2*(1+x)*(1+x^2)) + O(x^100)) \\ _Colin Barker_, Dec 14 2015 %Y A074229 Equals 2 * A072065 + 1. %K A074229 nonn,easy %O A074229 1,2 %A A074229 _Jon Perry_, Sep 17 2002 %E A074229 More terms from _Michel Marcus_, Mar 17 2014