cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074298 First occurrence of an 'average' valued sequence of length 2n in the Kolakoski sequence (A000002).

Original entry on oeis.org

1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 9, 4, 4, 3, 1, 4, 3, 1, 1, 9, 4, 4, 3, 1, 1, 3, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 1, 1, 1, 1, 3, 1, 1, 4, 3
Offset: 1

Views

Author

Jon Perry, Sep 21 2002

Keywords

Comments

a(n) is the least k such that K(k) + K(k+1) + ... + K(k + 2*n - 1) = 3*n, where K(m) = A000002(m).

Examples

			a[1]=1, as A000002 begins 1,2 (sum 3) a[2]=1, as A000002 begins 1,2,2,1 (sum 6) a[3]=1, as A000002 begins 1,2,2,1,1,2 (sum 9).
		

Crossrefs

Programs

  • Mathematica
    nmax = 90; a2 = {1, 2, 2}; For[n = 3, n <= 2*nmax, n++, For[i = 1, i <= a2[[n]], i++, AppendTo[a2, 1 + Mod[n - 1, 2]]]]; a[n_] := For[k = 1, True, k++, If[Plus @@ a2[[k ;; k + 2*n - 1]] == 3*n, Return[k]]]; Table[a[n], {n, 1, nmax}] (* Jean-François Alcover, Sep 25 2012 *)

Extensions

Offset corrected by Nathaniel Johnston, May 02 2011