A074299 Lengths of subsequences such that the first 'average' value (a[n]*1.5) is not achieved from the starting position in the Kolakoski sequence (A000002).
12, 32, 34, 52, 66, 84, 90, 92, 94, 96, 100, 102, 108, 110, 112, 114, 120, 134, 154, 156, 166, 172, 174, 194, 196, 202, 216, 230, 248, 254, 256, 258, 260, 266, 268, 272, 274, 276, 278, 280, 284, 286, 292, 294, 296, 298, 304, 318, 336, 342, 344, 348, 350, 352
Offset: 1
Keywords
Examples
The initial run of 12 adds up to 19, however if we start at position 3, then the sum is 18.
Links
- Nathaniel Johnston, Table of n, a(n) for n = 1..10000
Programs
-
JavaScript
a=new Array(); a[1]=1; a[2]=2; a[3]=2; cd=1; ap=3; for (i=4; i<1000; i++) { if (a[ap]==1) a[i]=cd; else {a[i]=cd; a[i+1]=cd; i++} ap++; cd=3-cd; } b=new Array(); oc=0; tc=0; c=1; for (i=1; i<1000; i++) { if (oc==tc) b[c++]=i-1; if (a[i]==1) oc++; else tc++; } /* document.write(b); */ /* document.write("
"); */ function isElement(x, arr) { for (j=1; jx) return false; } return false; } for (i=1; i<500; i++) if (!isElement(2*i, b)) document.write(2*i+", "); // Jon Perry, Sep 11 2012 -
Mathematica
max = 200; kol = {1, 2, 2}; For[n=3, n <= 2*max, n++, For[i=1, i <= kol[[n]], i++, AppendTo[kol, 1 + Mod[n-1, 2]]]]; A074298[n_] := For[k=1, True, k++, If[Plus @@ kol[[k ;; k + 2*n - 1]] == 3*n, Return[k]]]; Select[2*Range[max], A074298[#/2] > 1 &] (* Jean-François Alcover, Sep 25 2012 *)
Extensions
Edited by Nathaniel Johnston, May 02 2011
Comments