cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074313 a(n) = the maximal length of a sequence of primes {s_1 = prime(n), s_2 = f(s1), s_3 = f(s_2), ....} formed by repeated application of f(m) = Floor(m/2) on prime(n).

This page as a plain text file.
%I A074313 #2 Feb 11 2014 19:05:30
%S A074313 1,1,2,2,3,1,1,1,4,1,1,1,1,1,5,1,2,1,1,1,1,1,2,1,1,1,1,2,1,1,1,1,1,1,
%T A074313 1,1,1,1,3,1,2,1,1,1,1,1,1,1,2,1,1,1,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,
%U A074313 2,1,1,3,1,1,1,2,1,1,1,1,1,1,1,1,1,1,1,1,1,1,2,2,1,1,1,2,1,1,1,1
%N A074313 a(n) = the maximal length of a sequence of primes {s_1 = prime(n), s_2 = f(s1), s_3 = f(s_2), ....} formed by repeated application of f(m) = Floor(m/2) on prime(n).
%C A074313 The smallest value of n such that a(n) = 6 is n = 417.
%e A074313 To compute a(9): prime(9) = 23, f(23) = 11, f(11) = 5, f(5) = 2, f(2) = 1, where f(m) = Floor(m/2). Hence the sequence (of length 4) 23, 11, 5, 2 is the sequence of primes of maximal length formed by repeated application of f to prime(9) = 23. Therefore a(9) = 4.
%t A074313 f[n_] := Module[{i}, i = 0; m = n; While[PrimeQ[m], m = Floor[m/2]; i++ ]; i]; Table[f[Prime[i]], {i, 1, 100}]
%K A074313 easy,nonn
%O A074313 1,3
%A A074313 _Joseph L. Pe_, Sep 22 2002