This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074328 #25 Mar 20 2025 03:34:38 %S A074328 7,8,9,12,15,16,22,25,27,34,53,83,85,88,95,107,108,144,149,187,196, %T A074328 223,234,238,249,255,268,274,315,324,350,355,358,367,386,410,411,416, %U A074328 424,436,440,445,450,462,469,471,481,494,501,509,511,517,522,549,554,564 %N A074328 Numbers m such that prime(m^2+1)-prime(m^2)=2, where prime(j) is the j-th prime. %C A074328 Square roots of squares in A029707. - _Michel Marcus_, Oct 20 2022 %H A074328 Amiram Eldar, <a href="/A074328/b074328.txt">Table of n, a(n) for n = 1..10000</a> %e A074328 25 is a term because the 626th and 625th primes are twin primes: 4639 - 4637 = 2. %t A074328 t=Table[0, {250}]; t1=Table[0, {250}]; s=0; k=0; Do[s=Prime[1+n^2]-Prime[n^2]; If[s==2, k=k+1; t[[k]]=n; t1[[k]]=Prime[n^2]; Print[{k, n, Prime[n^2]}]], {n, 1, 2500}] t t1 %o A074328 (PARI) isok(m) = my(p=prime(m^2)); nextprime(p+1) - p == 2; \\ _Michel Marcus_, Oct 20 2022 %o A074328 (PARI) list(lim) = {my(k = 1, prv = 2); forprime(p = 3, lim, if(p - prv == 2 && issquare(k), print1(sqrtint(k), ", ")); k++; prv = p);} \\ _Amiram Eldar_, Mar 20 2025 %Y A074328 Cf. A029707, A001359, A006512, A011757. %K A074328 nonn %O A074328 1,1 %A A074328 _Labos Elemer_, Aug 21 2002