cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074362 Coefficient of q^2 in nu(n), where nu(0) = 1, nu(1) = b and, for n >= 2, nu(n) = b*nu(n-1) + lambda*(1 + q + q^2 + ... + q^(n-2))*nu(n-2) with (b,lambda) = (3,1).

Original entry on oeis.org

0, 0, 0, 0, 10, 66, 336, 1527, 6513, 26667, 106102, 413265, 1583331, 5986689, 22392606, 83002842, 305308666, 1115587020, 4052786850, 14648359515, 52705460583, 188868467853, 674332868566, 2399653030899, 8513523719661
Offset: 0

Views

Author

Y. Kelly Itakura (yitkr(AT)mta.ca), Aug 21 2002

Keywords

Comments

Coefficient of q^0 is A006190(n+1).

Examples

			The first 6 nu polynomials are nu(0) = 1, nu(1) = 3, nu(2) = 10, nu(3) = 33 + 3*q, nu(4) = 109 + 19*q + 10*q^2, nu(5) = 360 + 93*q + 66*q^2 + 36*q^3 + 3*q^4, so the coefficients of q^1 are 0,0,0,0,10,66.
		

Crossrefs

Coefficient of q^0, q^1 and q^3 are in A006190, A074361 and A074363. Related sequences with other values of b and lambda are in A074082-A074089, A074352-A074360.

Programs

  • Mathematica
    Join[{0, 0}, LinearRecurrence[{9, -24, 9, 24, 9, 1}, {0, 0, 10, 66, 336, 1527}, 30]] (* Jean-François Alcover, Dec 13 2018 *)

Formula

G.f.: (-3*x^7 - 18*x^6 - 24*x^5 + 10*x^4)/(1 - 3*x - x^2)^3.

Extensions

More terms from Brent Lehman (mailbjl(AT)yahoo.com), Aug 25 2002