This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A074376 #9 Sep 23 2016 16:22:34 %S A074376 0,5,12,22,35,35,70,51,51,70,176,70,247,117,92,92,425,92,532,117,145, %T A074376 247,782,117,145,330,117,176,1247,145,1426,145,287,532,210,145,2035, %U A074376 651,376,176,2501,210,2752,330,176,925,3290,176,287,210,590,425,4187 %N A074376 s(3s-1)/2 where s is the sum of the prime factors of n (with repetition). %H A074376 Harvey P. Dale, <a href="/A074376/b074376.txt">Table of n, a(n) for n = 1..1000</a> %H A074376 Neville Holmes, <a href="http://www.comp.utas.edu.au/users/nholmes/sqncs/cmbntns.htm#A074376">Integer Sequence Combinations</a> [Broken link?] %e A074376 a(20) = 9(3*9-1)/2 = 117 because 9 = 2+2+5 and 20 = 2*2*5. %t A074376 spf[n_]:=Module[{t=Total[Flatten[Table[#[[1]],#[[2]]]&/@FactorInteger[ n]]]},(t(3t-1))/2]; Join[{0},Array[spf,60,2]] (* _Harvey P. Dale_, Sep 23 2016 *) %o A074376 (PARI) sopfr(n) = my(f=factor(n)); sum(k=1, matsize(f)[1], f[k, 1]*f[k, 2]) %o A074376 fn(n) = my(s=sopfr(n)); s*(3*s-1)/2 \\ _Michel Marcus_, Jul 11 2013 %Y A074376 Applies A000326 to A001414. Cf. A074373, A074374, A074375. %K A074376 easy,nonn %O A074376 1,2 %A A074376 _W. Neville Holmes_, Aug 29 2002