cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A074392 a(n) = Lucas(n+1) + (3*(-1)^n - 1)/2.

Original entry on oeis.org

2, 1, 5, 5, 12, 16, 30, 45, 77, 121, 200, 320, 522, 841, 1365, 2205, 3572, 5776, 9350, 15125, 24477, 39601, 64080, 103680, 167762, 271441, 439205, 710645, 1149852, 1860496, 3010350, 4870845, 7881197, 12752041, 20633240, 33385280, 54018522
Offset: 0

Views

Author

Mario Catalani (mario.catalani(AT)unito.it), Aug 22 2002

Keywords

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(2-x)/(1-x-2*x^2+x^3+x^4), {x, 0, 40}], x]
  • PARI
    Vec((2-x) / ((x-1)*(1+x)*(x^2+x-1)) + O(x^50)) \\ Colin Barker, Jul 12 2017

Formula

a(n) = Sum (L(2i+e), (i=0, 1, .., Floor(n/2))), where L(n) are Lucas numbers and e=2(n/2 - Floor(n/2)).
Convolution of L(n) with the sequence (1, 0, 1, 0, 1, 0, ...)
a(n) = a(n-1) + 2*a(n-2) - a(n-3) - a(n-4) for n>3.
G.f.: ( 2-x ) / ( (x-1)*(1+x)*(x^2+x-1) ).
a(n) = 2*A052952(n)-A052952(n-1). - R. J. Mathar, Oct 04 2013
a(n) = 2^(-1-n) * (3*(-2)^n - 2^n + (1-sqrt(5))^(1+n) + (1+sqrt(5))^(1+n)). - Colin Barker, Jul 12 2017